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Abstract. The U.S. Geological Survey (USGS) has 
established robust collaborations with domestic state and 
international geological surveys to provide geophysical 
and other types of earth science data that act to underpin 
critical mineral research efforts across the United States, 
Canada, and Australia.  The Earth Mapping Resource 
Initiative (EMRI) is a national-scale collaborative effort with 
state geological surveys to improve geophysical and 
geological data to advance our understanding of the 
United States’ critical mineral endowment. The Critical 
Mineral Mapping Initiative (CMMI) is a tri-national 
collaboration with the federal geological surveys of 
Canada and Australia to conduct research that will aid in 
identifying new areas with potential for critical mineral 
deposits across all three countries. This study describes 
the important interplay between the EMRI and CMMI and 
how each act in a complementary fashion to advance 
critical mineral research. We present examples that 
illustrate how magnetic anomaly data are used to define 
critical mineral prospectivity for Mississippi Valley-type 
(MVT) Zn-Pb mineral systems and illustrate how CMMI 
magnetic derivative maps were considered into USGS’ 
EMRI efforts to acquire modern high-resolution airborne 
geophysical data over a large area within the US 
Midcontinent.    
 
1 Introduction  

Within the last four years, the USGS has 
established two significant research collaborations 
with US State Geological Surveys and with federal 
government surveys of Canada (Geological Survey 
of Canada) and Australia (Geoscience Australia). In 
2019, the USGS launched the Earth Mapping 
Resource Initiative (EMRI) in collaboration with the 
Association of American State Geologists (AASG). 
EMRI’s goals are to improve our understanding of 
the geologic framework of the country by mapping 
aspects of the surface and subsurface. 
Interpretations of subsurface geology and 
architecture are being greatly improved with the 
acquisition of new high-resolution geophysical 
surveys (Day 2019). EMRI activities were 
accelerated in 2021 with the passage of the 
Bipartisan Infrastructure Law, which provides a 
significant increase in funding for geologic mapping 
and geophysical surveys to better understand the 
United States’ critical mineral endowment.  The tri-
national Critical Mineral Mapping Initiative, a 
collaboration among the federal geological surveys 
of the United States (U.S. Geological Survey), 
Canada (Geological Survey of Canada) and 
Australia (Geoscience Australia) was formed in 
2019. The mission of the CMMI is to conduct 
research to better understand critical mineral 
resources in known deposits, determine the 

geological controls on known critical mineral 
deposits, and identify new sources of supply 
through mineral prospectivity mapping and resource 
assessment (Kelley 2020).  

Both the EMRI and CMMI are multi-faceted in 
their research approaches to mapping critical 
mineral geology and prospectivity. The CMMI is 
concentrating one aspect of its research on 
mapping mineral prospectivity for basin-hosted Zn-
Pb deposits, including Mississippi Valley-type (MVT) 
deposits, using machine learning techniques 
(Lawley et al. 2022). In parallel, EMRI has identified 
‘focus’ areas across the United States with potential 
for critical minerals (Dicken et al. 2022). Focus 
areas are defined collaboratively with the state 
geological surveys and are selected based on 
criteria such as areas undergoing active mining, 
areas currently or previously having been mined 
with by-product critical mineral production, or areas 
identified as prospective via exploration and 
research. The EMRI focus areas incorporate a wide 
range of system and deposit types (Hofstra and 
Kreiner 2020) and include known world class MVT 
districts.  Collaborative discussions with state 
geological surveys define planning and collection of 
new data including high-resolution airborne 
magnetic and radiometric surveys.  

Mississippi Valley-type deposits, including those 
in the United States, account for a significant 
proportion of the world’s base metal production and 
resources. These enormous hydrothermal systems, 
formed from evaporative brines and hosted in 
sedimentary basins are also a high-potential target 
for a long list of critical minerals including Ba, Be, 
Co, F, Ga, Ge, In, Nb, Ni, Sn, Ti, and Zn as well as 
principal commodities such as Ag, Cu, Pb, Th, and 
Y (Hofstra and Kreiner 2020; Dicken et al. 2022). 

This paper highlights geophysical efforts that 
support the goals of both projects by providing 
examples of how the CMMI and EMRI have worked 
in a complementary way to leverage legacy and 
modern magnetic data to identify MVT deposit 
potential in the southern Midcontinent of the United 
States. 

 
 
2 Methods 

Mineral prospectivity modelling requires ingestion of 
numerous earth science-related datasets, including 
surface geology, structure, and deposit location 
data, as well as geophysical data that can image 
rock properties in the subsurface to depths that can 
reach tens to hundreds of kilometres.  These latter 
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data can inform researchers on deeper crustal 
frameworks and former geologic processes that 
could have focused ore deposit formation. The 
significance of individual data types (e.g., 
magnetics) to geology and known deposits can be 
investigated on a layer-by-layer basis to investigate 
empirical relationships. The data can be then 
feature engineered to further enhance the empirical 

relationships prior to incorporating individual layers 
into the modelling process.  

Efforts to create CMMI mineral prospectivity 
models (Lawley et al. 2020) involved processing of 
geologic deposit location, geologic, and geophysical 
data to evidential layers for input into a machine 
learning environment.  National-scale magnetic 
anomaly data for the US, Canada, and Australia 
were filtered to enhance long-wavelength magnetic 
anomalies (McCafferty et al. 2023) for this purpose.  

The rationale for emphasizing the long 
wavelengths in the magnetic anomaly field arose 
from recent studies that show geophysical data 
related to physical property changes within the deep 
lithosphere are instrumental in mapping locations of 
major tectonic features and craton boundaries that 
are spatially associated with the distribution of 
sedimentary hosted deposits including MVT 
deposits (Hoggard et al. 2020; Huston et al. 2022). 

In general, deep-seated geologic sources give 
rise to long- wavelength anomalies.  To enhance the 
footprint of the deep-crustal magnetic sources, the 
horizontal gradient magnitude (HGM) of the long-
wavelength magnetic field (reduced-to-pole then 
transformed to pseudo gravity) was calculated. The 
edges outlining the magnetic source, often referred 
to as ‘worms’, track the maxima of the HGM and are 
interpreted to map the outer extent of the deep 
crustal magnetic sources (Fig. 1c).  

 
3 Results 

Processing of total magnetic field data to emphasize 
only long-wavelength (deep) magnetic features, as 
used in CMMI prospectivity modelling, permits 
simplification of a complex total magnetic anomaly 
map at the continental scale (e.g., Fig 1a) to more 
digestible broad scale trends (Fig.1b and 1c).  

The Midcontinent of the US is host to the largest 
MVT Zn-Pb province in world and includes the 
world-class districts of the Old Lead Belt, Viburnum 
Trend, and Tri-State districts among others. 
Eighteen MVT EMRI focus areas present (Fig. 2b). 
Of the 18 focus areas, 12 (67%) have overlap with 
one of four deep magnetic boundaries. Seventeen 
of the 18 focus areas (94%) occur within a 40 km 
distance of a deep boundary. 
   Analyses of other non-MVT EMRI focus areas 
(Dicken et al. 2022) show a similar spatial 
relationship with the locations of the deep 
boundaries.  This region of world class MVT 
deposits also hosts several other igneous mineral 
systems including the southeast Missouri IOA/IOCG 
province (i.e., Pea Ridge, MO IOA, Boss, MO 
IOCG), mafic magmatic systems (i.e., Glen 
Mountain PGE complex), and magmatic REE 
systems (i.e., Hicks Dome, IL and Magnet Cove, AR 
carbonatites). A total of 21 EMRI focus areas are 
mapped related to these 3 mineral systems, with 16 
or 76% of the focus areas either overlapping or 
falling within 40 km of a magnetic boundary. 
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4 Discussion 

The deep crust magnetic boundaries are interpreted 
to map the edges of ancient geologic terranes that 
acted to preferentially control overlying sedimentary 
geometries and subsequent younger mineralizing 
events.  Comparison of paleo-reconstruction 
models from a global terrane database of Eglington 
et al. (2013) show many of the magnetic boundaries 
parallel and lie close to the edges of ancient 
basement terranes.  

Depth to the deep magnetic boundaries is 
estimated to be approximately equivalent to the 
depth to the Moho from studies done on Curie depth 
across this region. The Moho ranges in depth from 
32 to 44 km in this area. We assume these depths 
approximate the lower boundary on magnetic 
susceptibility related to changes in mineralogy 
across the crust/mantle boundary. This assumption 
is supported by a study using the North America 
magnetic compilation (Ravat 2007) that determined 
the cold Archean and Proterozoic provinces within 
the Midcontinent of the U.S. were generally 
characterized by a non-magnetic mantle (Ravat and 
Purucker 2012).  

The close coincidence of the deep crust 
magmatic boundaries to the locations of known 
MVT districts hints at a fundamental control by deep 
crustal boundaries on the siting of these mineralized 
districts within an old, broadly stable craton. We 
hypothesize that these deep- seated structures 
influenced the sedimentary facies patterns in the 

overlying sedimentary basins, which may have 
influenced the flow paths of the brines responsible 
for MVT mineralization at least in the US 
Midcontinent. Preliminary examination of focus 
areas for some other deposit types (not shown) 
suggest that deep crustal boundaries may also 
control the siting of other deposit types.  Further 
research is required to affirm 
causation.  Nonetheless, these results suggest that, 
in some geological environments, deep geophysics 
may help to concentrate the prospective search 
area for ore deposits. Identifying ore-deposit 
locations through EMRI studies is thus 
consequential in advancing our understanding of 
our earth and improving responsible management 
of its resources. 

 
 
5 Conclusion 

 
National-scale magnetic anomaly data generated 
as part of the CMMI project, show spatial 
association with MVT mineral systems across the 
US Midcontinent. The vast majority (94%) of EMRI 
MVT focus areas occur within 40 kilometres of a 
deep magnetic boundary. The boundaries are 
estimated to represent geologic sources near the 
Moho and map the edges of ancient geologic 
terranes. Acquisition of modern high-resolution 
magnetic and radiometric surveys are being 
designed and flown for the EMRI program over this 
area of the Midcontinent.  The new data will shed 
light on the shallow expression of magnetic 
anomalies that allow for refinement of the first-order 
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controls on mineralization provided by the deep 
magnetic boundary analyses.  
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Abstract. The Neoproterozoic Arabian Shield formed 
following three major tectono-magmatic events during the 
Cryogenian–Ediacaran Nabitah orogenic cycle, including 
the pre-accretion, syn-orogenic and late- to post-orogenic 
stages, representing fertile environment for various 
mineral systems related to precious, base and rare metals. 
At the shield scale, the mineral prospectivity analysis that 
was performed, based on the selective review and 
reclassification of multiple geological and geophysical 
datasets, identified a series of mineral belts correlated with 
suture and shear zones concentrating the majority of 
mineral deposits and occurrences. (i) Pre-accretion arc-
related porphyry, epithermal, VMS mineral systems and 
magmatic deposits related to ultramafic rocks are 
predominantly distributed along the Nabitah, Al Amar, Bi’r 
Umq and Yanbu suture zones. (ii) Orogenic gold veins 
mainly developed in the N-trending Nabitah shear zone 
that is coaxial with the Nabitah and Al Amar sutures. Gold 
was remobilised from source rocks during this syn-
collisional tectonic event associated with a peak M1 of low-
grade metamorphism. Orogenic gold mineralisation also 
occurred sporadically along the NW-trending Najd strike-
slip fault system developed during late orogenic extension 
and associated with a peak M2 of high-grade 
metamorphism, locally. (iii) Finally, magmatic-
hydrothermal rare metal deposits formed in association 
with late- to post-orogenic alkaline, peralkaline and 
peraluminous granites. 
 
1 Introduction and geological setting 

The Arabian Shield (AS) is part of a larger geological 
Neoproterozoic assemblage, the Arabian-Nubian 
Shield (ANS) spreading over parts of Egypt, Eritrea, 
Ethiopia, Saudi Arabia, Somalia, Sudan and Yemen 
(Nehlig et al. 1999), which represents an area > 
1,100,000 km2 of fertile environment for various 
mineral systems related to precious, base and rare 
metals (Technip Group et al. 2015). However, the 
availability of geological and geophysical data is 
highly variable depending on the country, and 
historical surveys as well as exploration works are 
heterogeneously distributed and do not always 
cover areas of interest from a mineral prospectivity 
point of view. Although many of the geological data 
collected over the past decades in the AS have been 
digitalised into a Geographical Information System 
(GIS), an overall review of the major geological 
events that occurred through the geodynamic 
evolution of the shield, and their roles in providing 
the favourable conditions for ore genesis is currently 
lacking. Therefore, we reviewed and combined a 
broad variety of datasets collected over the past ten 
years into an in-house GIS database to assess the 
prospectivity potential of certain areas at the shield 

scale based on modern tectonic concepts (e.g. 
suture-structural-mineral belts) and the mineral 
systems approach, which can then be applied as 
exploration targeting criteria for different 
mineralisation styles at the belt or district scale (e.g. 
McCuaig et al. 2010). 

The ANS evolved between ~870 and 550 Ma as 
one of the largest tracts of juvenile Neoproterozoic 
crust in the world (Johnson 2014; Figure 1). Within 
this domain, the AS is differentiated by a series of 
variably oriented sutures punctuated by ophiolite 
complexes (Stern et al. 2004), shear zones and fold 
belts (Meyer et al. 2014; Elisha et al. 2017; Figure 
2). Suture zones and coaxially developed shear 
belts highlight the boundaries of magmatic arc 
remnants and micro-continental blocks (Stern and 
Johnson 2010; Johnson 2014) that were accreted 
during the Cryogenian-Ediacaran Nabitah orogeny 
(Nehlig et al. 2002) as a result of the Greater 
Gondwana assembly at 544 Ma (Stern and Johnson 
2010). 

The geodynamic evolution of the AS can be 
summarized by three main tectono-magmatic 
phases reflecting a 300-million-year process of 
continental crustal growth represented by 
amalgamated juvenile magmatic arcs and 
associated volcano-sedimentary basins, syn-
orogenic intrusive bodies and molassic basins, and 
late to post-orogenic granitoid intrusions (Stern and 
Johnson 2010; Figures 1 and 2):  

(i) a Late Tonian–Early Cryogenian (~880–660 
Ma) pre-orogenic rifting episode that triggered 
Rodinia break-up, which was followed by the 
formation of multiple magmatic island arcs together 
with fore- and back-arc volcano-sedimentary basins 
within an intra-oceanic subduction setting (Johnson 
et al. 2011; Johnson 2014). This episode 
corresponds with a major stage of juvenile crust 
formation in the northern East African Orogen, 
between West and East Gondwana (Stern and 
Johnson 2010). As the convergence progressed, 
these arcs were progressively amalgamated to form 
the AS, with a peak accretion age at ca. 780 Ma 
(Stern et al. 2004);  

(ii) a Late Cryogenian–Early Ediacaran (~690–
590 Ma) syn-orogenic stage marked by the onset of 
the Nabitah collision or orogeny (Nehlig et al. 2002; 
Johnson et al. 2011, 2013), which is dominantly 
characterised by an early peak M1 of low grade 
(greenschist) metamorphism at ca. 710 Ma (Elisha 
et al. 2017), the development of the N-trending, 
dextral transpressional Nabitah shear and fold belt 
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(~680–640 Ma; Johnson et al. 2011), deformed syn-
orogenic granitoids and post-accretion molassic 
basins (e.g. Murdama Group sediments; ~670–570 
Ma; Johnson et al. 2013); 

(iii) a Late Cryogenian–Ediacaran (~650–530 
Ma) late to post-orogenic phase of extensional 
collapse (Blasband et al. 2000) marked by the offset 
of the Nabitah structures by the NW-trending, 
sinistral Najd strike-slip fault system (Stern and 
Johnson 2010; Meyer et al. 2014), with local 
development of a late peak M2 of high grade (> 
amphibolite) metamorphism at ca. 620 Ma 
associated with a series of gneissic domes 
(Johnson et al. 2013; Elisha et al. 2017), late 
sediments infill in molassic basins (e.g. Jibalah 
Group > 640 Ma; Johnson et al. 2013) and 
numerous intrusions of late- to post-orogenic 
granitoids and dykes (~650–530 Ma) with post-
collisional anorogenic signatures (Eyal and Eyal 
1987; Lehmann et al. 2020). 

 

 
 
Figure 1. Chronology of major geological events through 
the geodynamic evolution of the Arabian Shield (modified 
after Eyal and Eyal 1987; Blasband et al. 2000; Nehlig et 
al. 2002; Stern et al. 2004; Stern and Johnson 2010; 
Johnson et al. 2011, 2013; Johnson 2014; Meyer et al. 
2014; Elisha et al. 2017; Lehmann et al. 2020). 

 
2 Methodology 

The mineral prospectivity analysis (i.e. Carranza 
2021) was performed on QGIS software by 
reviewing multiple datasets of geological and 
geophysical information including airborne 
magnetic and satellite imagery data, stratigraphic 
units, lithologies, structures, ore deposits and 
mineral occurrences inventory compiled from the 
literature and publicly available data provided by the 
Saudi Geological Survey. Lithologies were then 
classified based on their petrologic features, 
stratigraphic ages and related tectono-magmatic 
event through the Nabitah orogenic cycle. Similarly, 
structures were reclassified based on their nature, 
distribution and kinematic indicators with a particular 
attention in locating terrane boundaries and suture 
zones along which major structural belts developed. 
Finally, a selective review of the mineral occurrence 
database (Nehlig et al. 1999; Technip Group et al. 

2015) was conducted to determine key criteria and 
favourable contexts for ore genesis to assess the 
prospectivity potential of the main mineral systems 
developed in major structural belts of the AS that are 
presented in the litho-tectonic and metallogenic map 
of Figure 2.  

Mineral occurrences previously classified by 
commodities were reclassified according to their 
mineralisation styles and deposit types following the 
mineral system approach (McCuaig et al. 2010) and 
using criteria such as metal association, 
morphology, host rock, structural control, alteration 
pattern, and the local geological context. This 
mineral system approach was integrated into the 
geodynamic context as a precursor to statistical and 
spatial analyses that will be performed in the future. 

 
3 Mineral prospectivity analysis 

3.1 Pre-accretion, magmatic arc-related mineral 
systems  

The pre-accretion stage of the AS was dominated 
by arc magmatism within an oceanic subduction 
domain and provided favourable geological setting 
for the formation of VMS, epithermal and porphyry 
mineral systems, as well as magmatic 
mineralisation related to ultramafic igneous rocks. 
To date, no porphyry Cu-Mo deposit has been 
discovered and only few occurrences hosted in 
granodiorite mainly located at the edge of the Ad 
Dawadimi terrane in eastern AS were reported. 
Orthomagmatic Cr-Ni-Cu deposits and occurrences 
are predominantly hosted in mantle-derived or 
oceanic crust remnants ultramafic rocks (e.g. 
serpentinite, gabbro, peridotite) and distributed 
along the Yanbu, Nabitah and Al Amar suture zones. 
Syngenetic VMS Cu-Zn-(±Au) deposits and 
occurrences are mainly hosted in arc-related 
volcano-sedimentary basins showing bimodal 
volcanic records. Hence, their spatial distribution 
follows the orientation trend of their host lithologies, 
which are highlighted by the suture zones (Nabitah, 
Bi’r Umq, Al Amar, Yanbu) as a result of magmatic 
arcs collage during the accretion phase. For 
instance, the giant Jabal Sayid deposit (estimated 
resources of 56.4 Mt at 2.2% Cu, 0.1% Zn, 0.2 g/t 
Au, 5.0 g/t Ag; Technip Group et al. 2015) is hosted 
in bimodal volcanic rocks within the accretionary 
complex of a forearc volcano-sedimentary basin, 
south of the contact with the Bi’r Umq suture zone. 
Finally, prominent epithermal deposits and 
associated occurrences are mainly hosted in the 
contact zone between arc-related plutonic and 
volcanic rocks along the Al Amar (e.g. Al Amar 
deposit with estimated resources of 6.8 Mt at 14.0 
g/t Ag, 5.2 g/t Au, 4.5% Zn; Technip Group et al. 
2015) and Bi’r Umq (e.g. Mhad Ahd Dhahab deposit 
with estimated resources of 3.4 Mt at 44.2 g/t Ag and 
9.2 g/t Au; Technip Group et al. 2015) suture zones. 
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Figure 2. a Litho-tectonic map of the Arabian-Nubian Shield. b Litho-tectonic and metallogenic map of the Arabian Shield. 
c Structural map of the Arabian Shield showing the distribution of the main mineral belts. The grey zones correspond with 
the mineral belts as follow: (1) the Nabitah suture/shear zone, (2) the Al Amar suture zone, (3) The Bi’r Umq suture zone, 
(4) the Yanbu suture zone, (5) The Umm Farwah shear zone, (6) the Baydah shear zone, (7) the Tadj/Ibran shear zone, 
(8) the Hibashi suture/fault zone, (9) the Najd shear zone (modified after Nehlig et al. 1999, 2002; Blasband et al. 2000; 
Stern et al. 2004; Stern and Johnson 2010; Johnson et al. 2011, 2013; Johnson 2014; Meyer et al. 2014; Technip Group 
et al. 2015; Lehmann et al. 2020).
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3.2 Syn- to late orogenic gold systems  

Orogenic gold system is widespread throughout 
the AS and was related to two major tectono-
metamorphic events: (i) the syn-collisional 
development of the N-trending Nabitah shear and 
fold belt that is coaxial with the Nabitah and Al 
Amar sutures across the shield and associated 
with parallel shear zones in its southern part. Gold 
deposits and occurrences (e.g. Ar Rjum deposit 
with estimated resources of 84.0 Mt at 1.3 g/t Au in 
the Zalim district; Technip Group et al. 2015) are 
structurally-controlled by shear zones, often 
overprinting pre-accretion mineral systems, and 
occur as auriferous quartz-carbonate-(±sulfide) 
veins, which are hosted in various lithologies that 
experienced the peak M1 of metamorphism at the 
origin of fluid-mediated gold remobilization from 
source rocks; and (ii) the development of the NW-
trending Najd strike-slip fault system during the 
late orogenic extension associated with the peak 
M2 of metamorphism,. In this context, gold 
mineralisation is hosted in Nabitah/Nadj related 
shears within the contact zone of late orogenic 
intrusions (e.g. Ad Duwayhi deposit with estimated 
resources of 31.0 Mt at 2.4 g/t Au; Technip Group 
et al. 2015). 
 

3.3 Late to post-orogenic magmatic-
hydrothermal rare metal systems 

The AS also experienced a relatively intense 
episode of magmatism during the late- to post-
orogenic stage of the Nabitah orogenic cycle, with 
emplacement favoured along major crustal 
discontinuities represented by the Nabitah and 
Najd structural belts. The distribution and typology 
of associated rare metal magmatic-hydrothermal 
deposits and occurrences were mainly controlled 
by the chemical affinities of magma sources with 
Nb-Ta-REE-Th-U-Sn mineralisation related to 
alkaline and peralkaline granites and W-Sn-Nb-Ta-
Li-Be associated with peraluminous granite and 
pegmatite.  
 

4 Conclusions and perspectives 

The synthesis of the main geological and 
metallogenic events through the geodynamic 
evolution of the Arabian Shield allowed the 
characterisation of various mineral systems that 
formed during the pre-accretion, syn-orogenic and 
late- to post-orogenic phases of the Nabitah 
orogenic cycle. The mineral prospectivity analysis 
identified a series of mineral belts that concentrate 
the large majority of ore deposits and occurrences 
with suture zones (Nabitah, Al Amar, Bi’r Umq and 
Yanbu) and structural belts (Nabitah and Najd 
shear zones) as a major pathfinder at the shield 
scale. This study was therefore a necessary step 
to define prospective areas and narrow down the 

prospect generation for spatial and statistical 
analyses at the belt or district scale to provide 
guidance for exploration and generate future 
metallogenic research studies in the AS. 
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Abstract. The cinnabar (±stibnite) deposits of the Mt. 
Amiata geothermal system and the associated hot springs 
and gas vents, occur along a N-S directed, narrow 
longitude region.  
In this study, we combine a geological and geophysical 
dataset gathered from the early stages of geothermal 
exploration of the district with a multivariate statistical 
analysis carried out by Machine Learning (ML) algorithms 
to highlight possible correlations between the distribution 
of the geothermal expressions of Mt. Amiata and its 
geological/structural features. We used 5 distinct ML 
supervised models (Ordinary Least Squares Linear 
Regressor, Multilayer Perceptron Regressor, Support 
Vector Regressor, CatBoost, and Random Forest) to 
determine which set of geological or geochemical features 
of the dataset reproduces the distribution of the 
geothermal expressions of the area with sufficient 
accuracy. 
The regressors CatBoost and Random Forest, which use 
decision trees for probability calculations, are the most 
efficient in predicting the narrow-longitude distribution of 
the geothermal expressions of Mt. Amiata. Also, the only 
combination of predictors generating probability maps that 
accurately reproduce the distribution of the geothermal 
expressions is the one considering permeability, Hg 
solubility, T, and distances from faults and folds. This 
shows that only a combination of geological/geochemical 
factors can explain the peculiar regional distribution. 
 
1 Introduction 

With an historical production of c. 117 kt of Hg at a 
grade of 0.2-8 wt% (Segreto, 1991), the 
cinnabar(±stibnite) deposits of Mt. Amiata (south 
Tuscany, Italy) form one of the largest mercury 
districts ever documented. Here, 14 deposits of 
distinct sizes and economic importance were 
exploited between the years 1846 and 1982. Most 
of these deposits occurred along with uneconomic 
prospects within an area that is >30 km long in the 
N-S direction – from the Pietrineri deposit to the N 
to the Catabbio deposit to the S – and c. 15 km wide 
in the E-W direction (Fig. 1).  

The district is located within a geothermal system 
that was explored with a set of geophysical methods 
since 1953 (Cataldi, 1967). Presently, close to the 
cities of Piancastagnaio and Bagnore (Fig. 1) this 
system hosts 5 power plants having 88 MW installed 
capacity, which exploit two distinct wet-steam 
reservoirs (Barelli et al., 2010). The first is 2500-
4000 m deep at c. 300-350 °C, and the second is 

500-1000 m deep at 150-230 °C. In the district, CO2-
rich gas vents and hot springs were documented in 
detail (e.g., Frondini et al., 2009; Magi et al., 2019).  

The area belongs to the Apennine thrust-and-fold 
belt, which consists of a stack of tectonic units 
detached from the Adria plate that migrated 
progressively eastwards from the Late Oligocene to 
the Early Miocene (Marroni et al., 2015). Since the 
Late Miocene, the migration of this deformation front 
was followed by a stage of extensional tectonics and 
post collisional magmatism. 

A young volcano-plutonic system controls the 
geothermal system of Mt. Amiata, although only 
indirect evidence exists on the nature, shape, and 
depth of emplacement of the pluton (Gianelli et al., 
1988). Several data suggest the presence of this 
pluton at 4-7 km depth, with an apophysis located 
below Monte Labbro (Fig. 1).  

The Mt. Amiata volcano is a 305-231 ka old, small 
size volcano fed by a SSW-NNE eruptive fissure. 
From base to top, it is made of trachydacitic flows, 
olivine latitic to trachydacitic domes and flows, and 
olivine latites (Conticelli et al., 2015). Geochemical 
and isotopic compositions indicate a genesis from 
mixing between a high silica, high-K calc-alkaline 
magma and a mafic ultrapotassic magma. 

The volcano-plutonic system intruded the folded 
and faulted stratigraphic sequence made of 
allochthonous flysch units deposited onto oceanic 
crust (Ligurian Domain), Mesozoic carbonatitic and 
Cenozoic terrigenous formations (Tuscan Domain), 
and a poorly outcropping Carboniferous sequence 
made of graphitic quartz-phyllites, metagreywackes, 
and carbonate-bearing quartz-phyllites (Gianelli et 
al., 1988). 

The Mt. Amiata deposits consisted mostly of 
disseminations, massive stratabound, stockworks, 
and breccias cemented by cinnabar, metacinnabar, 
and marcasite (Arisi Rota et al., 1971). Stibnite, 
native Hg, pyrite, chalcopyrite, realgar, and orpiment 
were reported as minor phases. The most common 
gangue was calcite with minor celestite, fluorite, 
gypsum, zeolites, dawsonite, and amorphous silica 
(opal, chalcedony). 

The deposits share many similarities with those 
of the near-surface hot spring deposits formed close 
to volcanic centers (Pirajno, 2020). 
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Figure 1. Geological map of the Mt. Amiata ore district 

and location of cinnabar(±stibnite) deposits, prospects, 
gas vents, and hot springs (modified from: Calamai et al., 
1970). The three largest deposits are shown with larger 
symbols, and one of the 14 deposits of the district (Cerreto 
Piano) is located outside this map. Notice that all 
occurrences formed within a narrow longitude region. 

 
A distinct characteristic of these deposits is their 

location within a wide latitude but narrow longitude 
region (Fig. 1). Such distribution was known since 
early geological documentation of the area (e.g., De 
Castro, 1914); however, the controlling factors of 
such peculiar regional distribution were never 
explored to a sufficient extent. For instance, recent 
work (Brogi et al., 2011) showed that the location of 
the Morone deposit (Fig. 1) was controlled by the 
formation of sinistral shear zones during the 
Pleistocene, in particular by focussing of the ore fluid 
within extensional jogs and pull apart structures. 
While very important at the deposit scale, these 
structures alone do not explain why the deposits 
formed within a narrow longitude region at the district 
scale, leaving unanswered a fundamental question 
on the genesis of these deposits. 

The aim of our work is to apply Machine Learning 
(ML) algorithms to couple geological and 
geophysical data in order to explore possible 
correlations between the peculiar narrow-longitude 
distribution of the geothermal expressions of the 
area and its geological/structural features. Moreover, 
we apply a multivariate statistical analysis to predict 
the distribution of geothermal expressions in areas 
without surveys. We deliberately choose a limited 

dataset of surveys collected during the early stages 
of geothermal exploration because we want to 
simulate as much as possible a reconnaissance 
stage of mineral exploration, i.e., one in which a 
typical multidisciplinary mineral exploration dataset 
(from remote sensing, field mapping, geophysical 
and geochemical surveys, limited drilling) would be 
coupled with the statistical tools provided by ML 
algorithms.  

 
2 Methodology 

2.1 The dataset 

The geological data used for our predictions 
consists of the documented lithologies of the study 
area (Fig. 1) and of its relevant structural data. In 
detail, we considered all antiforms, synforms, and 
faults (inverse, normal) mapped in the geothermal 
database (Cataldi, 1967) and in recent studies 
(Bonciani et al., 2005). The lithologies were grouped 
into 4 complexes according to their established 
permeability, and care was taken to determine the 
positions of the top of the shallow reservoir (500-
1000 m deep) within the study area. These data 
were used to construct 2D and 3D geological 
models of the area. 

The ore deposit data consists of the locations of 
all the geothermal expressions of the area, which 
include cinnabar (±stibnite) ore deposits, 
(uneconomic) prospects, gas vents, springs (cold, 
hot), geothermal wells, and power plants.  

The physical-chemical dataset consists in the 
temperature (T) gradient, heat flow data, Bouguer 
anomaly data, and Hg solubility in the geothermal 
fluid, which was considered equal to the 
experimentally determined solubility of Hg°aq in 
water in the 0-350 °C interval (Clever et al., 1985).  

This information was used to prepare a set of 
24,398 points that mark the entire study area. Each 
point was univocally identified (via longitude, 
latitude, and depth) and characterized by unique 
predictor values of permeability, T, T gradient, Hg 
solubility, heat flow, Bouguer anomaly, distance 
from the nearest fold, distance from the nearest 
fault, and vertical distance from the top of the 
reservoir. 

 
2.2 Machine Learning models 

We calculated probability maps of the study area 
using five distinct ML supervised models (i.e., 
regressors). They are (1) Ordinary Least Squares 
Linear Regressor, (2) Multilayer Perceptron 
Regressor, (3) Support Vector Regressor, (4) 
CatBoost, and (5) Random Forest. These regressors 
differ from each other in that (1)-(2)-(3) calculate 
probability values by linear regression while (4)-(5) 
calculate probabilities by decision trees (Sun et al., 
2019). Each regressor calculated the probability that 
a specific combination of geological or geochemical 
features of the dataset can reproduce the distribution 
of the geothermal expressions of the area. We 
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divided these features into two categories, namely 
geometric and ore predictors (Table 1), which 
distinguish features that identify potential structural 
or lithological controls (distance from folds, faults, 
and reservoir) from physical-chemical controls 
(permeability, T, Hg solubility, etc.). Kriging-based 
spatial interpolation was used later to calculate 2-D 
probability maps, which were generated at distinct 
depths up to 1 km. 

Figure 2. Block diagram showing the typical workflow of a 
ML algorithm. 
 

Following typical ML methodologies, the 
available data were split into two subsets, namely 
the Training dataset and the Test dataset (Fig. 2). 
The first one was used to train the regressors, 
generate the ML model, and validate it. The Test 
dataset was used to carry out the predictions 
(Pedregosa et al., 2011). The Training dataset 
consisted of points where the occurrence of cinnabar 
deposits and/or prospects are historically known. 
This dataset was augmented following three 
established techniques (Farella et al., 2021) to 
improve the training of the distinct regressors when 
dealing with unbalanced classes of data. This 
generated three distinct datasets with which 
algorithms were trained and probability predictions 
were subsequently carried out. 

Correlations and predictions were calculated for 
eight combinations of predictors (Table 1) using the 
Scikit-learn Python libraries (Pedregosa et al., 2011), 
which integrate the five regressors listed above and 
other state-of-the-art ML algorithms. Our 
combinations do not consider all possible 
permutations of ore and geometric predictors, but 
rather favor the role of permeability, Hg solubility, 
and faults in the formation of the geothermal 
expressions. Each combination of predictors was 
analyzed with the 5 regressors, but out of the 24 
combinations of augmented datasets and regressors 
only seventeen provided results whose statistical 
significance was evaluated. We evaluated the 

accuracy of our prediction through three parameters: 
RMSE, MAE and R2. Below, we present and discuss 
two representative results of this work. 

 
3 Results 

The Ordinary Least Squares Linear Regressor, 
the Multilayer Perceptron Regressor, and the 
Support Vector Regressor generate probability maps 
that do not reproduce the spatial distribution of the 
geothermal expressions of Mt. Amiata with any of the 
considered combination of predictors. In contrast, 
CatBoost and Random Forest generate maps that 
reproduce with good accuracy the distribution using 
the augmented Training dataset and a specific 
combination of predictors (Test 8).  

Figure 3 shows two examples of interpolated 
probability maps generated with the described 
method using Random Forest. These maps highlight 
the different correlations that a given set of 
predictors generate with a given ML algorithm. Thus, 
the exclusive use of ore predictors (Test 1) by the 
Random Forest regressor generates high probability 
areas (Fig. 3a) that do not fit the established 
distribution of the geothermal expressions of Mt. 
Amiata (e.g., black triangles denoting 
deposits/prospects). Similar results are obtained by 
almost all other regressors using the combination of 
predictors presented in Table 1. 

 
Table 1. Combination of predictors used in this study. 
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2       X X X 
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4 X X     X X X 
5 X X      X  

6 X X X     X  

7 X X  X    X  

8 X X  X   X X  

Note: C4 denotes “Complex 4”, i.e., the permeable reservoir 
 
The only combination of predictors that allowed 

CatBoost and Random Forest to generate 
probability maps that approximate accurately the 
distribution of the geothermal expressions is the one 
that considers permeability, Hg solubility, T, and 
distances from faults and folds (Fig. 3b, Test 8). 

 
4 Interpretation 

ML algorithms based on decision trees for 
probability calculations (i.e., CatBoost, Random 
Forest) prove to be the most efficient in predicting 
the true distribution of geothermal expressions of Mt. 
Amiata for this dataset. The evidence that only a 
combination of physical-chemical and geological 
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predictors (Test 8) is able to reproduce the narrow-
longitude distribution of all geothermal expressions 
suggests that not all geological/structural factors 
play the same role in controlling ore precipitation, 
gas venting, and hot spring discharge in a 
geothermal field.  

Figure 3. Correlation maps based on the Random Forest 
regressor and calculated for the entire study area. The 
black triangles are the known cinnabar (±stibnite) 
deposits/prospects (Fig. 1). (a) Map calculated 
considering only the ore predictors (Test 1, Table 1). (b) 
Map calculated considering a selection of ore and 
geometric predictors (Test 8). 

 
Also, fault density alone is probably unable to 

control the regional distribution of all expressions of 
a geothermal system, but must combine with other 
factors that favor underground transport and 
precipitation, i.e. presence of folds, fluid T, and 
solubility. This is true also for the distribution at depth 
of geothermal expressions. Distributions of ore 
features similar to those reported here were 
documented in the Goldstrike Gold System, North 
Carlin Trend (Dobak et al., 2020). 
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Abstract. The shape of chondrite normalized zircon rare 
earth element (REE) patterns and Cerium (Ce) and 
Europium (Eu) anomalies provide insights into the 
conditions under which a zircon was crystallized. 
Therefore, using these elements as variables is common 
during machine learning algorithms training. However, 
several predictive models do not tolerate missing 
observations. Here, we propose two new methods, based 
on the lattice strain theory (Chondrite-Lattice) and Onuma 
diagrams (Chondrite-Onuma), using chondrite normalized 
values instead of partition coefficient. We compiled a 
dataset of ~1500 zircons, with known REE + Y 
concentrations, and used it to test and calibrate these 
methods. They require analyses of as few as five REEs to 
impute the missing REE in incomplete or legacy datasets 
and to estimate La, Pr, or Ce* in magmatic zircons. This 
allows for magma fertility models to have more variables 
available for model training and testing, in addition to 
providing a standardized method to calculate Ce*, La and 
Pr in zircon. 
 
1 Introduction  

Zircon is one of the most resilient accessory 
minerals in nature and is present in a wide range of 
geological environments. The geochemical and 
isotopic information it contains provides insights to 
understand fundamental earth processes (Finch 
and Hanchar 2003).  

The rare earth elements (REE) and Y have been 
widely studied in zircon. Their concentration and 
shape of their chondrite normalized pattern give 
information about their source rock (e.g. Rubatto 
2002; Zhu et al. 2022), and insights into the 
conditions under which the zircon crystallized (e.g. 
redox state, Loucks et al. 2020), among others.  

Several studies have attempted to establish 
geochemical discriminants that identify zircons that 
were crystallized from “fertile” magma. Here we 
refer to fertility as the capacity of a magma to form 
a porphyry copper deposit. Pizarro et al. (2020), 
based on traditional statistical analysis, suggested 
the term porphyry indicator zircon (PIZ) for a zircon 
with characteristics that are considered indicators of 
fertility (for instance, Eu/Eu* > 0.4 or Ce/Nd > 1, 
among others).  

Recent studies have applied machine learning 
algorithms to discriminate fertility among zircons, 
giving better predictions than traditional methods 
(e.g., Zou et al. 2022; Zhou et al. 2022). However, a 
drawback of several machine learning models is 
that they are unable to deal with missing data (Kuhn 
2020). If the amount of missing information is small, 
imputation techniques can be used during model 
training and cross-validation. Some of the common 
methods for imputation include the replacement of 
missing values for the mean or median of the 
variable or more complex methods that use 

predictive models based on the non-missing 
variables (Kuhn 2020). Particularly, in the case of 
REE, it is possible to impute using the geometric 
mean of adjacent chondrite-normalized REE of the 
element to replace. However, this method does not 
consider the curvature of the zircon pattern and it 
cannot be applied if two or more consecutive REE 
are missing or next to Ce and Eu. 

 

 
Figure 1. Onuma diagrams for three zircons from Ballard 
et al. (2002). Equations for each parabola are colour-
coded, where y = log10(x). The X-axis is reversed. The 
shading indicates a 95% confidence interval for the 
quadratic fit. A Partition coefficient estimates vs Ionic radii. 
B Chondrite normalised values vs ionic radii. Chondrite 
values were taken from Palme and O’Neill (2014) 

 
We demonstrate two methods that derive from 

Onuma diagrams (Chondrite-Onuma) and the lattice 
strain theory (Chondrite-Lattice), but using 
chondrite normalized values instead of partition 
coefficients, to impute missing REE and to calculate 
La and Pr where their concentrations are low; 
together with Ce* and Eu* anomalies in magmatic 
zircons. 

 
2 Onuma diagrams and the lattice strain 

theory 

Onuma et al. (1968) showed a relationship between 
an element's ionic radius and its partition coefficient 
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for a given mineral. All the elements of the same 
charge (e.g., +3 for most REE), describe a quadratic 
function with decreasing partition coefficient as the 
ionic radii are further displaced from the ionic radii 
of the lattice site where the substitution occurs 
(Figure 1A).  

 

 
Figure 2. Lattice strain regression for the same zircons as 
Figure 1. Equations for each parabola are colour-coded, 
where y = log10(x). The X-axis is reversed and represents 
the misfit parameter from the lattice strain equation. The 
shading indicates a 95% confidence interval for the 
quadratic fit. A Partition coefficient estimates vs Ionic radii. 
B Chondrite normalised values vs ionic radii. Chondrite 
values from Palme and O’Neill (2014) 

 
The lattice strain theory (Blundy and Wood 1994) 

explains the relationship between the partition 
coefficients and the misfit between the lattice site in 
the crystal and the actual ionic radius of an element 
occupying that space. The elements with the same 
charge describe a linear relationship (Figure 2A) 
where the partition coefficient decreases as the 
difference between the effective lattice site (r0) and 
the cation radius increases (ri).  

These methods can be used to impute missing 
REE, or to calculate La or Ce* in zircons (e.g., 
Burnham 2020; Loader et al. 2022). However, they 
require precise knowledge of the melt composition, 
which is often unavailable or cannot be analysed 
(e.g., detrital zircons).  However, if chondrite-
normalized values are used instead of partition 
coefficients, they have the same quadratic and 
linear relationship for the Onuma diagrams and the 
lattice strain theory, respectively. Therefore, we 
have used this empirical observation to overcome 
the limitations of using partition coefficients. 

 

 
Figure 3. Boxplots for the ratio between calculated and 
measured concentrations for each REE, excluding La, Pr, 
Ce and Eu. Calculated values will plot along the y = 1 line 
if they are equal to the measured values.  The blue 
segmented lines, blue continuous lines and red lines are 
reference lines for a discrepancy between measured and 
calculated values of 10%, 50% and 100%, respectively. 
Each box contains 50% of the data. Each box and 
whiskers represent 99.3% of the data. The grey dots are 
outliers and represent 0.7% of the data. A Chondrite-
Lattice. B Chondrite-Onuma methods. 

 
Figures 1 and 2 show the comparison of Onuma 

diagrams and lattice strain regressions for three 
zircons from Ballard et al. (2002) using partition 
coefficients and chondrite normalized values. We 
have used whole rock compositions as a proxy for 
melt composition and excluded Ce and Eu because 
can be present in more than one oxidation state. We 
have also excluded La and Pr due to their 
susceptibility to LREE contamination (Claiborne et 
al. 2018; Zou et al. 2019; Zhong et al. 2019; 
Burnham 2020). Both cases have an R2 higher than 
0.99.  

 
3 Data Compilation 

We have compiled nearly 1500 zircons from the 
literature that have the whole range of REE + Y 
analysed with no missing values (Ballard et al. 2002; 
Buret et al. 2016, 2017; Burnham and Berry 2017; 
Loader et al. 2017; Large et al. 2018, 2020, 2021; 
Lu et al. 2019; Zhu et al. 2020; Pizarro et al. 2020). 
Most of this data has been filtered for LREE-rich or 
titanite inclusions in their original publications. This 
dataset was used to evaluate the performance of 
the Chondrite-Onuma and Chondrite-Lattice 
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methods for different scenarios of missing REE. We 
have used a separate small dataset (Colombini et 
al. 2011; Taylor et al. 2015; Claiborne et al. 2018) of 
melt-zircon pairs to calculate La, Ce* and Pr using 
the lattice strain theory. The calculated values were 
used to compare the methods proposed in this study 
with those of Zhong et al. (2019). We have tested 
almost exclusively magmatic zircons. 

 
4 Imputation of REE + Y 

Figures 3A and 3B show the ratio between predicted 
and measured concentrations for the complete 
dataset for each REE and Y for the Chondrite-
Lattice and Chondrite-Onuma methods, 
respectively.  

Overall, the Chondrite-Lattice method (Figure 
3A) gives predictions that disagree, in median, up to 
~30% (Figure 3A), which is higher for the HREE 
section of the REE pattern. In contrast, the 
Chondrite-Onuma method (Figure 3B) gives 
predicted values that disagree by <5% with respect 
to the measured concentrations. Yttrium is 
underestimated by both methods, which is also 
observed in Figures 1 and 2 where the measured 
values fall above the regression line. In both cases, 
if the disagreement is systematic, the predictions 
can be calibrated by projecting them to the ratio = 1 
line. 

The cases in Figure 3 are overfitted models 
because all the REEs are used for prediction. We 
have reproduced 6 different scenarios where a 
different number of REEs are missing or censored 
(e.g., where not analysed or below detection limits). 
Both methods give good results if only three evenly 
distributed REEs, and identical results to those in 
Figure 3 if 4 or more REEs are used, excluding La, 
Pr, Ce, Eu and Y during modelling.  

  
5 Calculated La, Ce* and Pr 

Measured La and Pr concentrations in zircon are 
often considered unreliable (Claiborne et al. 2018; 
Zou et al. 2019; Zhong et al. 2019; Burnham 2020) 
and Ce anomalies are traditionally calculated using 
the geometric mean of these elements to obtain 
Ce*. Thus, their concentrations cannot be used as 
reference values. Therefore, we have used the best 
estimates for La and Pr, which are those derived 
from the lattice strain theory (using partition 
coefficients).  

Figure 4 shows the calculated values for different 
methods vs the lattice strain estimates for La and 
Ce. The calculated Ce is equal to Ce*. Both cases 
tend to slightly overestimate La and Ce* when 
compared to the lattice strain theory.  

Zhong et al. (2019) proposed a method to 
calculate Ce anomalies based on a logarithmic 
regression between the REE atomic number and 
their chondrite normalized concentrations. 
However, their method gives values that 
underestimate La and Ce* up to 2 and 1 orders of 
magnitude, respectively, compared to the lattice 

strain estimates. There is no difference between the 
methods for estimating Pr. 

 

 
Figure 4. A La and B Ce concentrations obtained by the 
lattice strain theory vs the calculated values using the 
chondrite-lattice strain, chondrite-Onuma and the Zhong 
et al. (2019) methods. Calculated Ce is equal to Ce* in this 
case. The blue line is the identity line. The segmented 
lines are 0.5 orders of magnitude apart.  Root mean 
square errors (RMSE) are colour coded according to the 
method, lower values are better. Zircon-glass pairs are 
from Colombini et al. (2011), Taylor et al. (2015) and 
Claiborne et al. (2018) 

 
6 Implications and conclusions 

The Chondrite-Lattice and Chondrite-Onuma can 
be used to impute missing REE in zircon, which 
gives complete datasets for training and testing of 
machine learning models. This is especially useful 
in the case of legacy data. Furthermore, the 
methods provide a standardized procedure for 
calculating La, Ce* and Pr so they can be used as 
input variables for new fertility models based on 
zircon geochemistry. We recommend the Chondrite-
Onuma method for imputation and the Chondrite-
Lattice to calculate La, Ce* and Pr.  

 
7 Code availability 

The methods used in the work have been compiled 
in the ImputeREE package for the R programming 
language. The package is accessible in the CRAN 
network and on the development site at 
https://github.com/cicarrascog/imputeREE. A 
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companion app is accessible from the development 
website.  
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Abstract. Zircon is a widespread mineral in igneous rocks 
and its geochemistry allows the reconstruction of the age 
and conditions of magma formation. This makes it possible 
to assess how a zircon that grew from a magma that 
formed a porphyry deposit differs from one that did not. 
Several studies have proposed geochemical signatures of 
zircon that can be used to distinguish between ore-bearing 
and barren magmas, such as Eu and Ce anomalies. For 
this study, ca. 18,000 zircons were compiled, including 
zircons from more than thirty deposits, which are 
compared with zircons from barren intrusions and rivers. 
We have trained different models for predicting fertility, 
focusing on the insights that can be obtained from these 
models. An oversampled random forest gave the best 
results with a ROC AUC of 0.977. The results suggest that 
the fertility signal in zircons becomes stronger as the 
porphyry systems evolve. The model reveals that there are 
differences in the LREE content of fertile and barren 
zircons but not in the HREE. The results show that the 
changes in the Ce anomaly in zircon are controlled by 
changes in Pr and La rather than changes in Ce. 
 
1 Introduction  

Porphyry copper deposits are the source of ~75% of 
the world’s copper and ~20% of its gold (Sillitoe 
2010). Although global consumption of copper is 
expected to increase in the next 50 years, the 
discovery of new deposits has decreased over the 
last decades (Elshkaki et al. 2016; Schodde 2019). 
Furthermore, the use of copper has become 
fundamental in the transition from fossil fuels to 
renewable energies (Månberger and Stenqvist 
2018). Therefore, it is critical to improve our current 
exploration methods to assure copper’s future 
demand. 

Zircon is a widespread accessory mineral 
present in a range of geological environments. It 
contains diagnostic elements and isotopes in its 
crystal structure, which in addition to its resistance 
to chemical and physical weathering (Finch and 
Hanchar 2003), make it suitable for a wide range of 
applications from geochronology (e.g., Compston 
and Pidgeon 1986) to identifying Earth’s major 
periods of mountain building (Zhu et al. 2022). 

Zircon can be found in igneous rocks that range 
in composition from intermediate to felsic and are 
important reservoirs for incompatible elements (e.g., 
U, Hf, REE, among others) in their host rock (Finch 
and Hanchar 2003). The content of several of these 
elements in the zircon lattice varies as 
physicochemical properties of the magma change, 
such as temperature (e.g. Ti, Ferry and Watson 
2007), oxygen fugacity (Ce and U, Loucks et al. 
2020), the magma composition or co-crystallizing  

 
 

minerals (Loader et al. 2017, 2022; Zhong et al. 
2018)  

Therefore, we consider the hypothesis that the 
conditions required for the formation of an economic 
porphyry copper deposit led to zircons with a unique 
trace elements geochemistry that can be used to 
predict fertility. Several studies have used traditional 
methods (e.g., univariate statistics) to define 
geochemical characteristics to classify fertile zircons 
(Dilles et al. 2015; Lu et al. 2016; Pizarro et al. 2020; 
Leslie et al. 2021). Pizarro et al., (2020) summarized 
these characteristics and suggest the term porphyry 
indicator zircon (PIZ) to be used for zircons with high 
Hf concentrations (> 8,750 ppm), high Ce/Nd (> 1), 
Eu/Eu* (> 0.4), (10,000xEu/Eu*)/Y (> 1), (Ce/Nd)/Y 
(> 0.01) ratios, intermediate Th/U ratios and low 
Dy/Yb (< 0.3).  

Recent studies (Zou et al. 2022; Zhou et al. 2022) 
have used machine learning algorithms to 
distinguish fertility in zircon crystals. They show that 
univariate criteria (e.g., Pizarro et al. 2020) have 
accuracies, depending on the dataset, of between 
80 to 90% whereas machine learning algorithms can 
reach up to 94% accuracy depending on the model 
used.  

 
2 Data and Methods 

For this study, ca. 18,000 zircons from ore-bearing 
and barren igneous rocks, and detrital grains from 
rivers, have been carefully compiled from the 
literature. The global dataset includes zircons from 
more than thirty porphyry copper deposits. The 
porphyry dataset contains nearly 5,000 zircons. The 
geological information of each grain (e.g., age, host 
rock composition, etc.) was carefully compiled where 
available. Furthermore, each zircon was labelled 
according to the deposit as Cu, Cu±Au, Cu±Mo or 
Cu±Au±Mo porphyry deposits, as well as according 
to their temporal distribution within the deposit as 
precursor or pre-, syn- or post-mineralization if 
indicated in the literature. The barren dataset 
considers 13,000 zircons from barren sources 
divided into three subsets: the river (n ~7,000, Zhu 
et al. 2020), GEOROC (n ~5,000, excluding 
porphyry-associated publications, Lehnert et al. 
2000) and the barren subsets (n ~ 800). Considering 
that economic porphyry copper deposits are rare 
(Richards 2022) it is a reasonable assumption to 
consider that the detrital zircons, from Earth’s major 
rivers, are barren. The GEOROC subset considers 
zircon from the GEOROC database. The barren 
subset considers zircon grains spatially or 



© Society for Geology Applied to Mineral Deposits, 2023 18 

temporally associated with porphyry copper deposits 
but that are considered barren within the district.  

Cerium anomalies have been associated with an 
increase in the oxygen fugacity of the magma, but its 
calculation is difficult due to the low La and Pr 
content of zircon (Ballard et al. 2002; Zou et al. 2019; 
Zhong et al. 2019). Here, we have used a new 
empirical method to calculate Ce (Carrasco-Godoy 
and Campbell, in review), based on the lattice strain 
theory, to impute any missing REE and to calculate 
standardized La, Pr concentrations and Ce 
anomalies. 

We have trained a random forest (Breiman 2001), 
decision tree and logistic regression. Each model 
was trained using five times repeated 10-fold cross-
validation, considering raw and oversampled 
datasets to account for class unbalance. Each model 
was trained with and without centred log-ratio (CLR) 
transformation of the data (Aitchison 1984). The 
models were ranked according to their performance 
metrics: the area under the receiver operating 
characteristic curve (ROC-AUC) which indicates the 
possibility of a random fertile zircon ranked higher 
than a randomly selected barren zircon; sensitivity 
which is the proportion of fertile zircons correctly 
identified among the fertile zircons; and specificity 
which is the proportion of barren zircons correctly 
identified among the total of barren zircons. The 
three best models had their hyperparameters tuned 
using a mix of grid search and simulated annealing 
(Kuhn and Silge 2022).  

Here, we present the results of the best model 
with a detailed analysis of the model predictions on 
individual probabilities in addition to the outcome 
prediction. Then, we link the results of the models to 
geological processes than can lead to the formation 
of fertile zircons. 

Data processing, feature selection and model 
training and testing were performed in R 
programming language using the base (R Core 
Team 2022), tidyverse (Wickham et al. 2019) and 
tidymodels (Kuhn and Wickham 2020) 
metapackages. Random forest and decision trees 
were fitted with the Rpart and ranger packages 
(Wright et al. 2021; Therneau and Atkinson 2022). 

 
3 Results and discussions 

The best model was an oversampled random forest 
without CLR transformation. Centred log-ratio 
transformation has been widely applied to remove 
the effects of the constant sum in closed data (e.g., 
major elements that sum 100%, Aitchison 1984). 
However, we did not observe any improvement 
between CLR and the raw data. We attribute this to 
the closed nature of the zircon crystal lattice which 
would not allow more elements than their formula 
unit can hold or the non-parametric nature of 
Random Forest models (Nathwani et al. 2022).  

The metrics during model training were the area 
under the receiving operating characteristic (ROC 
AUC) of 0.977 ± 0.05%, sensitivity of 0.87 ± 0.28% 
and specificity of 0.95 ± 0.11%, whereas in the 

testing set where a ROC AUC of 0.978, sensitivity of 
0.89 and specificity of 0.94.  

An additional set with zircons neither in the testing 
nor training set was used for external validation. 
Most of the data are from deposits, rivers or barren 
intrusions that were not present in the training or 
testing sets. The results are ROC AUC of 0.978, but 
with a lower sensitivity (0.707) and a higher 
specificity (0.98). 

Most binary classification algorithms estimate 
membership probabilities and use 0.5 as a 
boundary. Figure 1 shows a normalized histogram of 
the fertile zircon membership probability according 
to each subset for the predictions in the testing set. 
Only the deposit dataset contains zircons labelled as 
fertile. In this histogram, each bin represents the 
relative proportions of each class rather than the 
total counts. The individual probabilities in the testing 
set show that most of the zircons, with more than 
50% probability of being fertile, belong to the testing 
set and misclassified zircons fall to a minimum after 
the probability is higher than 90%. Therefore, 
depending on the degree of confidence the 
boundary to define fertile zircons can be adjusted. A 
shift of the classification boundary (red line in Figure 
1) to the right would increase the confidence of a 
zircon being fertile at the cost of discarding more 
fertile zircons as barren (an increase in the 
specificity and a decrease in the sensitivity). 

 

 
Figure 1. Normalized histogram of the predicted 
probabilities from oversampled random forest in the 
testing set. The colours indicate the different subsets from 
the main dataset. X-axis is logit-transformed. The red 
dashed line indicates a probability of 0.5. Each bin shows 
the proportion of zircons from each dataset that falls within 
that probability. 

 
The analysis of the misclassified grains for each 

class membership, considering a probability 
boundary of 0.5, decreases from precursor (34%) to 
post-mineral (1.6%) which suggests an increase in 
the fertile signature as the porphyritic systems 
evolve. In contrast, barren zircons mislabelled as 
fertile reach 18% for the barren subset, 14% for I-
type granites, 5% for detrital zircons from rivers and 
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1.9% for S-type granites. The misclassification 
percentage can be used as a benchmark of how 
many mislabelled zircons can be expected when 
applying a predictive model to unknown data.  

The random forest corrected Gini impurity 
importance ranking (Nembrini et al. 2018) for the 
features included in the model training indicates that 
Eu anomaly and Ce anomalies are the most 
important variables, which is consistent with 
observations by other authors (Loader et al. 2017; 
Zou et al. 2022; Zhou et al. 2022). There is a 
decrease in the importance from LREE to HREE. 
The study of the median between ore-associated 
and barren zircon shows little to no difference for the 
HREE. In contrast, there is an increase in the median 
difference from pre-mineral to post-mineralization 
zircons as the ionic radius of the REE increases. 
Lanthanum and Pr have the highest variation, a 
factor of 6 and 4, respectively. However, these 
variations should be taken as indicative only, due to 
the difficulty of measuring LREE in zircon makes it 
difficult to gauge the real magnitude of these 
changes. In contrast, Ce concentrations are 
relatively constant with a maximum median variation 
of less than 1.6. This is consistent with the 
observations of Loader et al. 2022. We suggest that 
the variation in Ce anomaly in zircon is mainly 
controlled by the depletion of La and Pr, rather than 
the variation of Ce.  

 
3 Conclusions and future work 

We have shown that random forest models provide 
an improvement in predictions of zircon fertility when 
applied to porphyry copper deposits over traditional 
methods based on univariate statistics. We have 
compiled the largest and most complete dataset to 
date for training fertility models using zircon 
geochemistry.  

Insights obtained from the model suggest that 
there is an increase in the fertility signal in zircons as 
porphyry systems evolve. Ce and Eu anomalies are 
the best predictors of fertility and the LREE have 
more weight in the prediction of fertility than HREE.  
Changes in Ce anomaly are likely controlled by 
variations in La and Pr rather than Ce 
concentrations.  

Future work considers a model pipeline to classify 
detrital zircons according to the deposit type they are 
associated with, Cu, Cu-Au or Cu-Mo, and their 
temporality (pre- to post-mineralization). 

Finally, each model can be tailored to increase the 
probability of correct classification by taking into 
account their geological and geographic context.  
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Abstract: In this paper we present a new mineral 
exploration indicator system based on big data. It focusses 
on specific types of mineral deposits and is guided by ore-
forming models, driven by AI, statistical analysis, and other 
algorithm libraries. It intelligently extracts and integrates 
multi-scale and multi-type exploration indicators to form a 
system that can automatically evolve with exploration 
activities. The new system is a bridge that connects big 
data for mineral exploration and accurate prospect 
prediction, and may be an effective tool for guiding 
exploration. 
 

1 Introduction of MEI 

The concept of a "mineral exploration indicator” 
(MEI) in this paper refers to the characteristic of 
exploration results obtained through variable mineral 
exploration methods that have a mineralization-
indicating effect. It is the integration of prospecting 
signs and exploration methods, which can fully 
reflect the relationship between prospecting signs, 
exploration activities, and exploration methods. 

MEI has three key features: (1) spatial features, 
i.e., all exploration indicators are associated with 
specific spatial locations; (2) exploration method, 
i.e., all exploration indicators are obtained through 
specific exploration activities, within a certain range 
of exploration scales, and through the use of certain 
exploration methods; and (3) mineralization-
indicating effect, i.e., the essential features of all MEI 
is that they have direct or indirect mineralization-
indicating effects. 

 
2 Classification of MEI 

MEI can be subdivided in detail according to different 
classification criteria such as exploration methods, 
mineralization-indicating effect, spatial dimensions, 
data types, exploration scales, and types of mineral 
deposits. 

(1) According to the exploration methods, they 
can be divided into geological indicators, mineral 
indicators, geophysical indicators, geochemical 
indicators, remote sensing indicators. (2) 
According to the mineralization-indicating types, 
they can be classified into abundance indicators, 
proximity indicators, and anomaly indicators 
(Yousefi et al., 2019). (3) According to the spatial 
dimensions, they can be classified into one-
dimensional indicators, two-dimensional 
indicators, three-dimensional indicators, and four-
dimensional spatiotemporal indicators. (4) 
According to the information expression types, 

they can be divided into qualitative indicators, 
morphological indicators, and quantitative 
indicators. (5) According to different exploration 
scales, they can be classified into global 
indicators, mineralization domain indicators, 
metallogenic province indicators, metallogenic 
belt indicators, ore field indicators, and deposit 
indicators. (6) According to the types of mineral 
deposit, they can be classified into MEI for 
porphyry copper deposits, skarn-type deposits, 
ion-adsorption type rare earth deposit, orogenic 
gold deposit. 

 
3 Extraction of MEI 

The key point of the method for extracting MEI is to 
analyse and judge whether the exploration data has 
a mineralization-indicating effect. The extraction 
methods for different types of MEI have similarities 
but also significant differences. 

The extraction method for abundance indicators 
mainly includes statistical analysis methods such as 
ore grade calculating and information quantity 
method. The extraction method for proximity 
indicators mainly includes adjacency analysis 
methods such as buffer zone analysis and nearest 
neighbour analysis, as well as distance field 
analysis method. The extraction method for 
anomaly indicators mainly includes traditional 
statistical methods, probability plot method, 
multivariate statistical methods, geological 
morphology analysis method, multifractal method, 
wavelet analysis method, machine learning method 
(Mokhtari and Sadeghi, 2021; Cracknell and 
Reading, 2014; Chen et al., 2023). However, the 
extraction methods for anomaly indicators vary for 
different exploration methods, such as probability 
density distribution method and two-dimensional 
empirical mode method for extracting geophysical 
anomaly indicators, interference removal and 
principal component thresholding method for 
extracting remote sensing anomaly indicators. 

 
4 Construction of MEI system 

The mineralization-indicating effect of a single MEI 
is limited, and prospect prediction is a complicated 
process that requires the integration of multiple 
exploration indicators to form a system that can 
jointly improve the accuracy and precision of ore 
prediction. The MEI system proposed in this paper is 
a combination of multi-scale exploration indicators 
according to the type of ore deposit (Fig. 1). 
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Therefore, the MEI system consists of two major 
elements: (1) a set of multi-scale exploration 
indicators with different exploration scales, 
exploration methods, and deposit types; (2) 
integration methods for combining the exploration 
indicators in the system, which can be divided into 
knowledge-driven methods, data-driven methods 
(Yousefi et al., 2021), and AI-driven methods. 
 

 
Fig. 1 The construction and application process 

of mineral exploration indicator system 
 

The knowledge-driven method mainly relies on 
expert experience to drive the integration of 
indicators and is suitable for blind ore prediction in 
areas with low levels of mineral exploration and 
limited exploration data. It includes methods such as 
Boolean logic model, index overlay method, fuzzy 
logic model, and evidence belief method. The data-
driven method mainly uses traditional data statistics 
algorithms to drive indicator integration. It is suitable 
for prediction in regions with high levels of 
exploration and rich exploration data. It includes 
methods such as statistical analysis, 
comprehensive information value method, evidence 
weight method, and Bayesian network classifier. 

The AI-driven method mainly uses big data and 
artificial intelligence methods to drive indicator 
integration and is currently a hot and cutting-edge 
research topic, including methods such as logistic 
regression analysis, random forest method, support 
vector machine method, neural network method, 
and deep learning method (Barak et al., Wang et al., 
2020; Chen et al., 2022; Roshanravan et al., 2023). 

 
5 Future of MEI system 

With the continuous development of the theoretical 
disciplines of ore deposits, mineral exploration, 
computer science, information science, and the 
continuous improvement of technologies such as big 
data, artificial intelligence, and exploration methods, 
the development of the MEI system research will 
also enter a new stage. The future research trend of 
the MEI system will generally develop from "simple 
dispersion" to "intelligent integration", which will be 
specifically manifested as: (1) the development of 
simple indicator towards complex indicator; (2) the 
development of two-dimensional indicator towards 
three/four-dimensional indicator; (3) the 
development of single-element indicator towards 
multi-element indicator; (4) the development of fuzzy 

indicator towards precise indicator; (5) the 
development of manual extraction indicator towards 
intelligent extraction indicator; and (6) the 
development of data-driven indicator integration 
towards intelligent-driven indicator integration. 
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Abstract. The central Andes is the world’s highest altitude 
cordilleran mountain belt and contains nearly half the 
world’s reserves of copper – a critical mineral for global 
clean energy technologies. While previous studies have 
debated the relative importance of deep-seated structural 
corridors, plate motion, and cordilleran development in the 
formation of porphyry copper deposits and the Andes, a 
formal, data-driven approach that assesses these 
relationships has not been undertaken. To address this 
gap, we conduct time-series and statistical analysis of 
published orogenic proxies in the central Andes and 
compare them to different plate convergence models. We 
identify both linear and causal tectonic processes that are 
occur prior to and simultaneously with the formation of 
these deposits. By identifying the most suitable plate 
motion models, we provide a novel perspective into the 
complex interplay between plate motion, orogenic uplift, 
and porphyry Cu mineralisation in the central Andes. Our 
data-driven results advance our understanding of how 
plate convergence and orogenic processes in the central 
Andes interact and provide insight into tectonic 
preconditioning processes that are required for the 
formation of giant porphyry copper ore deposits.   
 
1 Introduction  

The central Andes represents the type example 
of a cordilleran orogenic system. Because of this, 
there are a plethora of studies that have 
investigated the orogenic evolution of the central 
Andes, based on structural geology and basin 
evolution, petrology, geochronology, 
thermochronology, paleoelevation, seismology, and 
geodynamic modelling, and there have been many 
models produced for the plate tectonic motions of 
the Farallon-Nazca plate (NAZ) and South American 
plate (SAM). Given the myriad different models that 
exist for the tectonic evolution of the central Andes, 
how does one decide which model(s) are most the 
useful for further tectonic analysis related to 
porphyry mineralisation processes in the central 
Andes?  

 
In this study, we employ data-driven analysis to 

compare competing plate motion models to 
orogenic processes in the central Andes since the 
late Cretaceous using the Pearson correlation 
coefficient (r), and we apply Granger causality, a 
robust method for identifying causal linkages 
between time-series variables that exhibit temporal 
lag. Granger causality has been widely employed in 
economic, medical, and climatic studies, however, 
its application in geology has remained largely 
unexplored. Using Granger causality, we investigate 
temporal linkages between plate convergence 

parameters and orogenic variables, and we assess 
their statistical correspondence. 

Our data-driven method yields critical insight into 
the relationships between plate tectonic and 
cordilleran orogenic processes, including the 
necessary tectonic conditions for metallogenic 
episodes, which form giant porphyry copper 
deposits (PCDs; >3 Mt contained Cu) at the 
intersections of continental-scale structural 
corridors during high strain episodes (Farrar et al. In 
Press).     

 
Figure 1. a) Retro-projected trajectory for a point on the 
Nazca plate relative to South America. We selected a seed 
point that is currently entering the trench at 20°S and retro-
projected it to 68 Ma, using the five plate models analysed 
in this study (see Methodology). b) Mean convergence 
rate per Myr along the trench for each plate motion model, 
shading represents one standard deviation of the mean. 

 
2 Methodology 

Five plate tectonic motion models representing a 
diversity of available models for SAM-NAZ 
convergence (Pardo!Casas and Molnar 1987; 
Somoza and Ghidella 2012; Schepers et al. 2017; 
Müller et al. 2019; Quiero et al. 2022; hereafter 
referred to as PCM87; SG12; S17; M19; Q22; 
Figure 1) were output from pyGPlates in 1 Myr age 
bins.  Linear correlation analysis of these models 
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was conducted at 1 Myr temporal intervals. The 
mean and standard deviation of convergence 
obliquity and convergence rate for each plate 
tectonic motion model, every 1 Myr was calculated 
for each trench sample point. 

 
Time-series data representing orogenic proxies 

for the central Andes since the Late Cretaceous 
were compiled (Figure 2). These consist of 
paleoelevation of geomorphological domains 
(Boschman 2021) tectonic stress (Sr/Y) and crustal 
thickening (La/Yb) proxies from unaltered volcanic 
rocks (Loucks 2021), flat slab subduction events 
(Ramos and Folguera 2009) and exhumation rate 
history (Stalder et al. 2020) and the cumulative 
contained Cu associated with giant porphyry copper 
deposits (this study) per metallogenic epoch (Sillitoe 
and Perello 2005), Figure 3).  

 

 
Figure 2. Time series tectonic indicators 

 
To enable a direct temporal comparison of 

orogenic and plate tectonic datasets, we binned 
model proxies into two-million-year time intervals for 
linear correlation analysis (Figure 4) and G-causality 
analysis (Figure 5). Due to positive skewness in 
Sr/Y, La/Yb, and exhumation data, we log10 
transformed these variables, resulting in 
approximately Gaussian distributions. We 
conducted autocorrelation and Augmented Dickey 
Fuller (ADF) tests on the time series datasets using 
the python statsmodels ADF package and we 
performed the G-causality tests using the 
statsmodels grangercausalitytests package in 
Python (Seabold and Perktold 2010). 

 
Figure 3. Pareto charts of the total contained Cu of giant 
porphyry copper deposits, per Cenozoic metallogenic 
epoch (Sillitoe and Perello 2005) in the central Andes.  

 
 

3 Results 

3.1 Linear correlation analysis  

Our investigation of orogenic proxy pairs 
demonstrates significant positive correlation (r > 
0.7) between tectonic stress and crustal thickening 
as well as between exhumation rate and 
paleoelevation (Figure 4). These results indicate 
that as tectonic stress increases, so does crustal 
thickening, and changes in paleoelevation are 
broadly synchronous with changes in exhumation 
rate. These results are consistent with visual 
analysis of Figure 3, which illustrates the cyclic 
nature of crustal thickening processes over the 
temporal range. 

 
 
 



© Society for Geology Applied to Mineral Deposits, 2023 25 

 
 

Figure 4. Pearson correlation of the means of orogenic 
proxies, SG12 convergence rate, PCM87 convergence 
obliquity, cumulative giant PCD tonnage, since 70 Ma. 

 
 
Incorporating plate convergence parameters and 

cumulative Cu tonnage allows for the simultaneous 
assessment of non-orogenic proxies. Figure 4 
shows that paleoelevation and cumulative Cu 
tonnage exhibit a significant linear relationship (r = 
0.9) and convergence rate and cumulative Cu 
tonnage are also significantly linearly correlated (r = 
0.73; Figure 5).  

 

 
Figure 5. Scatter plots of cumulative Cu tonnage and 
Paleoelevation against SG12 convergence rate. Red line 
is the linear correlation coefficient for each pair.  

 
 

3.2 Granger causality 

Our investigation using Granger causality 
analysis (Figure 6) revealed several significant 
lagged causal relationships that were not detected 
in the linear correlation analysis for the orogenic 
proxies (Figure 4). These relationships include a 
causal effect of crustal thickening on paleoelevation, 
exhumation rate, and flat slab state, as well as a 
feedback loop where paleoelevation and 
exhumation rate both affect crustal thickening. Our 
results also indicate that changes in tectonic stress 
drive variations in paleoelevation, exhumation rate, 
and crustal thickening, while flat slab subduction 
leads to increased paleoelevation and exhumation 
rate. 

 
Incorporating the five plate motion models to the 

G-causality analysis with the orogenic uplift proxies 
enables us to investigate causal relationships 
between plate motion and orogenesis. The results 
showed whilst many models exhibit causal linkages 
with orogenic proxies, the SG12 convergence rate 
model exhibits 7 causal linkages with orogenic 
proxies, indicating its suitability for further 
metallogenic analysis.  

 

 
Figure 6. G-causality matrix of plate motion and orogenic 
proxy pairs. H0 = x-axis variable does not G-cause the y-
axis variable, H0 is rejected if p-value of the F-test <0.10. 
p-values of variable pairs, non-background-colored 
intersections represent variable pairs that exhibit 
statistically significant G-causality (p-value < 0.10). 

 
The SG12, PCM87, and S17 convergence rate 

models were found to strongly G-cause 
paleoelevation responses, while the SG12, PCM87, 
and Q22 models G-caused flat slab events. 
Additionally, the SG12 model was found to G-cause 
exhumation, while the M19 model was found to G-
cause tectonic stress. Interestingly, the orogenic 
proxies themselves were found to exhibit strong 
causality on SG12 convergence rate, with 
paleoelevation, exhumation rate, crustal thickening 
and tectonic stress proxies all exhibiting feedback 
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with SG12 (Figure 6). The PCM87 convergence 
obliquity was found to strongly G-cause changes in 
crustal thickening and tectonic stress proxies and 
was thus defined as the most useful convergence 
obliquity model (Figure 6). 

 
4 Conclusions 

Our study provides a novel approach for the 
evaluation of plate motion models based on their 
relationship with convergent margin tectonics. Our 
data driven analysis shows that there is a significant 
linear relationship between increasing Cu tonnage 
in metallogenic epochs and increasing rate of 
convergence and increasing Andean elevation. 
There are also lagged correlations that are not able 
to be determined by linear analysis alone. By 
determining the direction of temporally lagged 
variables using Granger causality analysis, causal 
relationships between plate motion and orogenic 
processes can be detected that are not identified 
using linear correlation techniques. 

Future research will build on this tectonic process 
model, as well as incorporating the best correlated 
plate motion models with orogenic proxies, to 
examine the causal spatial and temporal 
relationships between giant PCDs and plate tectonic 
processes in the central Andes.  
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Abstract. Recent years have seen a sharp increase in the 
generation and use of mineral trace-element data in 
geological research. However, while much new data is 
being generated and published, relatively little work has 
been done to develop appropriate methods for statistical 
analysis and interpretation. Several characteristic features 
of mineral trace-element data require careful consideration 
during evaluation and interpretation to avoid biased 
results. In particular, the generally hierarchical structure of 
the data must be considered. Unfortunately, this is not 
done in most current studies. This contribution provides a 
brief overview of what hierarchical data structures are, and 
what consequences they have for statistical analysis and 
data interpretation.  
 
1 Introduction  

Modern laser ablation inductively coupled plasma 
mass spectrometry (LA-ICP-MS) systems enable 
the rapid, spatially resolved collection of mineral 
trace-element data at relatively high sensitivity and 
low cost. This has led to their widespread use in 
geological research (Sylvester and Jackson 2016).  

Unfortunately, the accompanying increase in the 
generation and use of mineral trace-element data 
has not been accompanied by a commensurate 
increase in understanding of how best to use and 
interpret it. Specifically, the time lag between the 
capabilities for data generation and interpretation 
seems to be chiefly due to a lack of appreciation by 
many workers for the key mathematical features of 
the data and their consequences for statistical 
analysis.  

While the requirements arising from the 
compositional nature of trace-element have already 
been discussed in detail elsewhere (van den 
Boogaart and Tolosana-Delgado 2013, Frenzel et 
al. 2016), this contribution focusses on hierarchical 
data structures. After a short description of what is 
meant by this term, different approaches for dealing 
with these data structures are described. An 
example is then given to illustrate the biases that 
may be introduced into the analysis of a dataset by 
ignoring them. Finally, recommendations are made 
for future work.   

 
2 What are hierarchical data structures? 

In hierarchical data structures, each datapoint is 
characterized by multiple attributes, each referring 
to a different level of organization. In mineral trace-
element datasets, such data structures typically 
arise from both the nature of the data as well as the 
sampling and analysis processes (Dimitrijeva et al. 
2018, Godefroy-Rodriguez et al. 2020).  

 
 

Figure 1. Example hierarchical data structure for mineral 
trace-element data collected on different deposit types. A 
more detailed description is provided in the main text. 

 
For example, in a high-level LA-ICP-MS study 

each data point may be described by the following 
attributes, in order of increasing level of 
organization: “analysis spot” < “mineral generation” 
(if several are present) < “sample” < “deposit” < 
“deposit type”. This is also illustrated in Fig. 1 and 
has several consequences for the expected 
mathematical properties of the data. 

Most importantly, one would expect two 
datapoints from such a dataset to be more similar, 
the more attributes they have in common. That is, 
two datapoints from the same sample and same 
mineral generation would be expected to be more 
similar than two points from different samples but 
from within the same deposit, which would in turn be 
expected to be more similar than datapoints 
collected on samples from different deposits, and so 
on. The chief reason for this is that the further two 
datapoints are separated in the data hierarchy, the 
further they are also separated in space and time, 



© Society for Geology Applied to Mineral Deposits, 2023 28 

and the greater should be the differences in the 
geological conditions they reflect.  

One can mathematically express these ideas by 
a formula describing the observed variability in 
trace-element concentrations in terms of the 
different effects caused by differences at each of the 
hierarchical levels. For the data structure described 
above and shown in Fig. 1, one may write:  

log$𝑐!"#$%&' & = 𝑅𝑒𝑓' + 	𝑇𝑦𝑝𝑒!' +𝐷𝑒𝑝𝑜𝑠𝑖𝑡!"' + 𝑆𝑎𝑚𝑝𝑙𝑒!"#'

+ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛!"$' +	𝜀!"#$%' 					(1) 

Where 𝑐!"#$%&'  is the concentration of trace-
element A measured in analysis spot 𝑚, in mineral 
generation 𝑙 on sample 𝑘, from deposit 𝑗, belonging 
to deposit type 𝑖; 𝑅𝑒𝑓' is a reference value for the 
concentration of A, e.g., a global mean; 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛!"$'  is the mean effect of mineral 
generation 𝑙 in deposit 𝑗 in district 𝑖 on 𝑙𝑜𝑔(𝑐'), 
expressed as an additive value, and corrected for 
variations between samples, deposits, and deposit 
types; 𝑆𝑎𝑚𝑝𝑙𝑒!"#'  is the mean effect of sample 𝑘 in 
deposit 𝑗 of type 𝑖, and so on. Finally, 𝜀!"#$%'  is the 
residual value of the specific analysis spot. Note that 
this description assumes that the identified mineral 
generations are only consistently identifiable within 
the same deposit 𝑖𝑗, and that the effects of the 
different factors, or hierarchical levels are 
statistically independent. Alternative models are 
possible, where consistent identification of mineral 
generations is feasible over smaller or larger scales, 
and where interactions between the different factors 
occur (cf. Winter 2013, Dmitrijeva et al. 2018).  

If one assumes that the dataset is balanced, i.e., 
the same number of observations are available for 
each unique combination of the different attributes, 
then the total variance of the observed data 
following model (1) would be:  

𝑣𝑎𝑟Alog$𝑐!"#$%&' &B = 𝑣𝑎𝑟$𝑇𝑦𝑝𝑒!'& + 𝑣𝑎𝑟$𝐷𝑒𝑝𝑜𝑠𝑖𝑡!"'&

+ 𝑣𝑎𝑟$𝑆𝑎𝑚𝑝𝑙𝑒!"#' & + 	𝑣𝑎𝑟$𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛!"$' &

+ 𝑣𝑎𝑟$𝜀!"#$%' &			(2) 

This is just another way of expressing the ideas 
described above, namely, that knowing the value of 
one measurement with a set of attributes 𝑖𝑗𝑘𝑙𝑚 
already narrows the expected range of values for the 
next measurement with the same, or some of the 
same attributes. This may seem obvious to most 
geologists. However, it has dramatic consequences 
for the statistical analysis of the data. Namely, it 
means that individual datapoints are not expected to 
be statistically independent (cf. Dmitrijeva et al., 
2018). Nor is it obvious that individual sets of 
observations 𝑖𝑗𝑘𝑙𝑚𝑛 can be assumed to be 
identically distributed, i.e., to follow the same 
probability distribution. For instance, the mean 
effects of the samples, 𝑆𝑎𝑚𝑝𝑙𝑒!"#' , within one deposit 
should have different mean and variance than those 
from the next deposit, resulting in a different 
distribution of the corresponding 𝑙𝑜𝑔(𝑐').  

However, both statistical independence and 
identical distribution (iid) are key assumptions in 
virtually all statistical methods. To further complicate 
matters, mineral trace-element data is often 
unbalanced, i.e., different numbers of observations 
are available for each specific combination of 
attributes. The combination of these features means 
that standard statistical methods cannot be sensibly 
applied to the raw spot data. Biases are introduced 
into data analysis if this is done, as illustrated below.  

Finally, we note that hierarchical data structures 
and unbalanced datasets also occur frequently in 
other areas of geochemistry. Some attention had 
been paid to this in the past, e.g., in the hierarchical 
estimation of Clarke values describing crustal 
abundances (Ketris and Yudovich, 2009). However, 
this has unfortunately not entered universal practice.  

 
3 Dealing with hierarchical data 

To sensibly apply standard statistical methods to 
hierarchically structured data, one must find a way 
to modify this data such that the iid assumption 
generally required for data analysis is satisfied. This 
can be achieved by aggregation of the data to the 
hierarchical level relevant for the analysis.  

Consider the case where one is interested in the 
differences in trace-element signatures between 
deposit types for a dataset with the same structure 
as our example in Fig. 1. The relevant hierarchical 
level for analysis would be that of individual 
deposits. The mean trace-element concentrations 
for the deposits can relatively safely be assumed to 
be independent from each other and follow a simple 
probability distribution, i.e., to be iid. The main task 
then is to infer the probability distribution of deposit 
means for each deposit type from the available data 
and use this to answer any question(s). 

Different methods exist to achieve the necessary 
aggregation of the data to the desired hierarchical 
level. In the present example, the simplest way of 
doing so would be to compute hierarchical means 
for the individual deposits and use these means for 
further analysis (cf. Ketris and Yudovich, 2009). 
Hierarchical computation in this case would mean, 
that the mean for each mineral generation on each 
sample is first calculated from individual analysis 
spots, then the mean for each sample is estimated 
from the means per mineral generation, and finally 
the deposit mean is calculated from the sample 
means (cf. Fig. 1). This removes the biases due to 
the different numbers of observations available from 
each sample, deposit, generation etc.  

However, this approach is cumbersome. The 
unbalanced nature of the data also means that 
some hierarchical means are more uncertain than 
others, i.e., means will generally be more certain for 
deposits where more samples were taken. This can 
be dealt with in the further statistical analysis by 
giving weights to each of the means to reflect its 
uncertainty. However, the relevant uncertainties 
themselves are not always easy to quantify, 
particularly where only single observations are 
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available, e.g., where only one sample has been 
taken for a given deposit. Such cases are in fact 
relatively common (cf. Frenzel et al. 2016). 

A more sophisticated way of performing the 
hierarchical estimation of mean values and the 
corresponding uncertainties is to fit a model of the 
form of eq. (1) to the data. The relevant class of 
models for this purpose are linear mixed effects 
(LME) models (Winter, 2013; Dmitrijeva et al., 
2018). These models can be used to simultaneously 
make unbiased estimates of the mean effects 
(including uncertainties) of the different attributes at 
each hierarchical level. Such estimates can then be 
used in further data analysis.  

In fact, LME models are much more versatile than 
this, and can be used to analyse many different 
problems. Where the capabilities of LME models are 
suitable to address a specific question, it is therefore 
best to apply them directly to a given dataset. This 
may remove the need for cumbersome hierarchical 
aggregation of the data prior to analysis. 

 
4 Effects of ignoring hierarchical data 

structures 

Disregard for hierarchical data structures is typically 
expressed in mineral trace-element studies by the 
treatment of individual datapoints from the lowest 
hierarchical level of a dataset as iid observations. 
Thus, in an LA-ICP-MS dataset all individual spot 
measurements belonging to one deposit type may 
be taken to represent this type, regardless of how 
many deposits the data covers, or how many 
samples were analysed per deposit. 

What does this do to the analysis and 
interpretation of the data? It will have two major 
effects. First, it will suggest that there are far greater 
numbers of independent observations, and thus 
greater statistical power, than are actually present in 
the dataset. Second, it will introduce bias into the 
analysis whenever the data is unbalanced, i.e., 
nearly always. Finally, it will introduce artefacts to the 
shapes of the observed data distributions. These 
effects are illustrated graphically in Figure 2 using an 
example from the literature. 

Figure 2a shows a PCA biplot from Bélissont et 
al. (2014) indicating different “fields” of sphalerite 
composition for different types of Pb-Zn deposits, 
based on a “large” set of LA-ICP-MS point analyses. 
On the other hand, Fig. 2b shows the same data 
reduced to its relevant hierarchical level, i.e., the 
hierarchical means for individual deposits, including 
their associated uncertainties. Several features are 
apparent from this comparison.  

First, the data distribution in Fig. 2a shows many 
blob-like features, or clusters. Second, each of 
these clusters appears to be defined by many 
datapoints. Since the statistical power of a dataset 
increases with 1/√𝑛	(think of the standard error of 
the mean), where 𝑛 is the number of available iid 
observations, Fig. 2a would suggest that such 
complex distributional shapes reflect the real 
distribution of the data for the different deposit types. 

For instance, if one was to analyse a new sample 
from another MVT deposit not represented in the 
original dataset, surely it would plot inside one of the 
MVT fields delineated in Fig.2a. 

 

 
 

Figure 2. Graphical illustration of the typical effects of 
treating individual LA-ICP-MS analysis spots as 
independent observations: a) reproduction of Fig. 13c of 
Bélissont et al. (2014), a PCA-biplot of several hundred 
individual analysis spots of sphalerite from different types 
of Pb-Zn deposits; b) reconstruction of a) showing deposit 
means and associated 95% confidence intervals. Note 
that the somewhat imperfect reconstruction in panel b) is 
chiefly due insufficient documentation in Bélissont et al. 
(2014) regarding the assumptions made to run PCA. They 
do not describe whether they used scaled or unscaled 
input variables, nor how they treated missing values (i.e., 
below detection limit or missing at random). 
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In fact, nothing could be further from the truth. As 
Fig. 2b shows, most of the clusters observed in 
Fig. 2a in fact appear to reflect individual deposits, 
although the reconstruction is not perfect (cf. 
explanation in figure legend). This reduction also 
highlights how very few iid observations are really 
available. The total number of deposits in the 
dataset is only 26. That is, the statistical power of 
the dataset is in fact so low, that no reliable 
distinction between deposit types is possible. This 
clearly illustrates the major effect of ignoring 
hierarchical data structures: it creates 
overconfidence in potentially biased results. 

 
4.1 Overfitting of data by ML methods  

A specific type of overconfidence in erroneous 
results occurs when disregard for hierarchical data 
structures (and sometimes other features) is 
coupled to the use of machine learning (ML) 
methods, e.g., for classification problems. As 
illustrated in Fig. 2a, disregard for hierarchical data 
structures will generally create datasets with 
apparently complex, clustered data distributions. ML 
methods are excellent at picking out the irregular, 
high-dimensional boundaries between such clusters 
for classification or regression purposes (Bishop 
2006). Thus, any ML models fitted to such data will 
generally have a much greater degree of complexity 
than is justified by the true nature of the data.  

To make matters worse, the false assumption 
that individual observations are iid also short-circuits 
the key quality-control measure typically used to 
assure the reliability of the ML results: application of 
the fitted model to a test dataset randomly 
subsampled from the original data, and therefore 
assumed to be independent of it. However, because 
the test data will again contain only individual spot 
analyses, which must necessarily come from the 
same clusters already included in the training data 
(samples/deposits), the assumption of 
independence will be violated. Thus, the apparent 
classification accuracy is usually greatly 
overestimated, providing exaggerated confidence in 
the potentially flawed results.  

While this may seem like a rather specialized 
issue, the recent surge in the popularity of both ML 
methods and mineral trace-element data has led to 
the publication of many articles suffering from this 
problem (e.g., Sun and Zhou 2022, Li et al. 2023). 
Given the potentially complex interactions between 
high-dimensional data structures and the 
classification algorithms typically used (random 
forests, neural nets etc.), it is difficult to say which of 
the results reported in such studies are reliable. 

 
5 Conclusions and future work 

Hierarchical data structures are currently ignored by 
most workers using mineral trace-element data. This 
introduces biases into data analysis and may result 
in conclusions that are not justifiable given the data. 
To avoid such issues in the future, appropriate 

methods must be used for data analysis. 
Hierarchical aggregation and the use of LME models 
for data analysis both provide adequate approaches. 
In fact, the use of these methods offers significant 
potential for interesting discoveries regarding the 
nature and causes of the often-substantial variance 
observed in the trace-element signatures of many of 
the common and less-common minerals occurring in 
mineral deposits. Specifically, the quantitative 
understanding of the variance structure of the data 
via LME models may be useful in this regard (e.g., 
Dmitrijeva et al. 2018, Frenzel et al. 2022).  
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Abstract. Geodatascience is an emerging field that 
combines traditional geoscience expertise with the (data) 
science of artificial intelligence and machine learning. The 
pace and volume of data acquisition is rapidly increasing 
in mineral exploration campaigns, at mining operations, 
and in near-mine environments, leading to the 
accumulation of large datasets that can be challenging to 
process and interpret using conventional methods. 
Machine learning and data science techniques add speed 
and consistency to interpretation of large datasets, aid in 
the amalgamation of new and historic datasets, and 
facilitate the integration of disparate data types with 
varying resolutions. All these factors help shorten the gap 
between discovery and development, and companies 
across the entire mining value chain, in a variety of 
commodities, are realizing the value of incorporating 
machine learning workflows and machine-assisted 
modelling to assist in the discovery and development of 
ore bodies.    
 
1  Machine learning in mineral exploration 

and mining 

1.1 Significance of ML tools for exploration  

Machine learning (ML) and data science are 
increasingly gaining acceptance as exploration 
tools, with applications ranging from core image 
analysis (Acosta et al. 2019), prospectivity mapping 
(Carranza 2010, Sun et al. 2019) to 
chemostratigraphy (Bluemel 2021), and large 
language models helping to query the corpus of 
geoscientific literature (Deng et al. 2023). 

 
1.2 Practical applications of machine learning 

for exploration 

The most important components of any successful 
mineral exploration campaign are a robust 
geological map and a realistic geological model that 
represent the synthesis of field observations with 
interpretations from fundamental datasets such as 
geochemistry, mineralogy, and geophysics.   

 
1.3 Interpretability of ML results 

To integrate traditional geological interpretations with 
results obtained from ML models, it is necessary to 
understand the entire ML process from start to finish. 
This includes selecting fit-for-purpose data types, 
choosing appropriate transformations and data pre-
processing, and utilizing appropriate algorithms. The 
results must then be critically evaluated and 
integrated with geological insights and field 

observations, to ensure the final result most closely 
resembles geological reality.  

 
1.4 Linking ML results with geological reality 

We can pinpoint several examples where machine 
learning algorithms can be easily interpreted and 
linked to geological insights, thereby providing a 
good starting point for increased acceptance and 
adoption of machine learning processes in 
exploration, for example:  

- Dimensionality reduction applied to 
geochemical data extracts insights about 
different styles of mineralization. For instance, 
principal component analysis (PCA), which is 
a dimensionality reduction technique, allows 
the integration of statistics with geology by 
illustrating which geochemical elements 
exhibit similar behaviour, thereby adding 
clarity to the interpretation of datasets from 
new jurisdictions. 

 

 
Figure 1. Drillhole domaining based on geochemistry, 
using Al (blue), Hf (dark blue), Ti (navy blue), Y (violet), Zr 
(dark red) and Nb (light green) as input signals. Zr and Hf 
curves are overlapping. Colours of the domains refer to 
inferred geological units. The dataset is processed by the 
ALS Goldspot Tessellation app 
(https://tessellation.app.goldspot.ca/), with dataset of 
Halley (2020) as an example 

- Drillhole domaining based on geochemical 
information (Fig. 1). By selecting relevant 
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input signals, it is possible to routinely classify 
drillhole samples for the purpose of defining 
lithology, alteration, or mineralization styles. 

- Reconciliation of clustering results and logged 
lithology or alteration labels (Fig. 2) helps 
derive objective criteria which can be utilized 
by logging geologists to differentiate and 
classify rock types and alteration 
assemblages,  

- Assessment of relative importance of 
geochemical signal for the prediction of 
stratigraphy (Fig. 3) by calculating and plotting 
the SHapley Additive exPlanations (SHAP) 
values. The SHAP values represent the 
importance of each feature and are calculated 
by comparing the model’s predictions with and 
without the involvement of each input variable 
(Lundberg et al. 2020). The comparison of 
SHAP values for different input variables can 
assist in selecting the most fit-for-purpose 
assay techniques 
 

 
Figure 2. Relating geochemical information (left, also 
illustrated in the downhole plot of Figure 1) to logged 
alteration labels (right), using Al, Hf, Ti, Y, Zr and Nb as 
input signals. The dataset is processed by the ALS 
Goldspot Tessellation app 
(https://tessellation.app.goldspot.ca/), with dataset of 
Halley (2020) as an example 

 
Figure 3. Defining a quantitative metric for the importance 
of geochemistry for predicting the stratigraphy (SHAP 
curve). Centred log-ratio transformed geochemical data 
and magnetic susceptibility (MagSus) were used as the 
model’s inputs  

 
1.5 Data limitations and considerations 

Machine learning techniques are becoming more 
prevalent as computational costs continue to lower, 
and traditional barriers to entry like the necessity of 
in-depth knowledge of an object-oriented 
programming language (such as Fortran, C++, or 
Python) are overtaken by the rapid increase of the 
availability of GUI-based applications, such as 
Orange Data Mining. It is now possible to create 
robust ML models that can produce accurate results 
by memorizing the input data, and this creates the 
illusion of a good fit to the test dataset, but lacks the 
capacity to be successfully deployed and generalize 
to the new data! However, the diligent data scientist 
can recognize that these high accuracies are the 
result of data leakage and model overfitting. 
By understanding the limitations of machine 
learning algorithms, and combining robust 
exploratory data analysis, transparent scaling and 
transformation procedures, we can ensure the 
successful deployment of many state-of-the-art ML 
techniques. Meticulous attention to cataloguing of 
metadata, consistent logging of categorical 
variables, and robust treatment of missing data can 
ensure that the data is fit-for-purpose, and properly 
cleaned and homogenized before use in the  
machine learning model. The resulting model is 
robust and flexible, and produces realistic results 
that are more easily interpretated.   

 
2 Case study 

This presentation will showcase various tools, 
techniques, and case studies where Artificial 
Intelligence, Data Science, and expert geoscientific 
approaches are combined to add understanding to 
the geological system with the goal of discovery. By 
enhancing the ability of an exploration team to 
interpret rock textures based on core photos, as well 
as integrating geochemistry, textural information, 
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and geophysics to improve understanding of 
already known orebodies, we can leverage our 
knowledge from well-defined systems to increase 
our understanding as we interpret data from new 
mineral systems. This case study combines 
structured data (extracted from drillcore 
photography) with geochemical and petrophysical 
data to create ML predictions of the presence of 
mineralization, which can be modelled in 3D. This 
case study provides a workflow for exploration 
targeting when dealing with challenges like complex 
deposit models, and subtle differences in 
geochemical or textural signal. This case study will 
also highlight the importance of a strong geological 
framework to underpin the successful deployment of 
machine learning algorithms. 
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Abstract. Scanning electron microscopy (SEM)-based 
automated mineralogical studies were undertaken on 
samples from a heavy mineral sands project on West 
Coast, South Island, New Zealand, to characterise the 
mineral assemblage and to quantify the abundance of 
garnet and ilmenite. These data were used as a training 
dataset to build linear regression models that predict 
garnet and ilmenite abundances from major element 
geochemistry from X-ray fluorescence spectroscopy 
(XRF) data. The model-performance metrics indicate that 
the models robustly predict the abundances of these 
minerals, which allows us to rapidly and inexpensively 
derive garnet and ilmenite abundances which can be used 
as an input for subsequent mineral resource estimates 
(MREs). 
 
1 Introduction  

Automated, quantitative analysis of a mineral 
assemblage in an SEM with energy-dispersive X-
ray spectroscopy (EDS) can provide a precise and 
accurate measurement of the abundance of mineral 
phases within a sample. However, it is also time-
consuming, relatively expensive, and requires very 
careful sample preparation to ensure that the 
sample presented to the SEM is representative. 
XRF analysis is relatively cheap, rapid, and requires 
less complicated and time-consuming sample 
preparation. 

A statistical model can be built to accurately 
predict the mineral abundances from the XRF 
geochemistry. This makes sense theoretically – the 
geochemistry is directly related to the mineralogy – 
and does indeed work well in practice; furthermore, 
for mineral deposits with simple mineralogy (Ritchie 
et al., 2019, Tay et al., 2021), this can be effective 
with a limited number of training data. 

 
2 Methodology 

2.1 Sample collection and preparation 

A set of 30 samples that were representative (based 
on geochemistry) of the heavy mineral sand deposit 
were chosen for automated mineralogy, 28 of which 
were selected from hand auger samples to cover 
the full variability in garnet and ilmenite abundance 
across the deposit, and two of which were 
processing-plant concentrate to provide high-
abundance samples. Samples were sieved to be 
between 53 µm and 2 mm; and a split was taken for 

automated mineralogy and another taken for 
pulverisation and XRF analysis.  

Care was taken to ensure that the ~10 g of 
sample taken for each SEM analysis was 
representative of the original sample. Samples were 
mounted in 25 mm epoxy rounds, and then cut in 
half and remounted to present the cut faces in 30 
mm epoxy rounds so as to minimise bias in the 
sample caused by differential settling by grain size 
and density. 

 
2.2 XRF analysis 

The pulverised portion of the sample was analysed 
by SGS Westport, New Zealand, by flux fusion XRF 
on a Bruker S8 TIGER instrument resulting in a 
dataset of 11 major elements reported in wt.% oxide. 
  
2.3 Automated Mineralogy 

The 30-mm epoxy rounds were analysed in a 
Hitachi 3900SU SEM using 2 Bruker EDS detectors 
and Bruker’s Advanced Mineral Analysis and 
Characterization System (AMICS) software.  

More than 99% (by cross-sectional area) of 
mineral grains were successfully classified. As a test 
on the quality of the AMICS results, a comparison 
was made between the major element chemistry as 
measured by XRF, and the inferred chemistry 
calculated from the measured abundances of the 
AMICS-classified minerals. This test work showed a 
high level of agreement between the two methods, 
verifying that the SEM sample preparation and 
analysis methods are robust. 
 
3 Linear Regression Modelling 

A multiple linear regression model was built in 
Python to predict both garnet and ilmenite 
concentrations from the XRF chemistry, using the 
SEM-derived mineral abundances as training data. 
The following elements were used as model inputs: 
Si, Al, Fe, Ca, Mn and Ti. 

The performance of the models were evaluated 
by holding out a random 30% of the samples, and 
using bootstrap resampling on the remaining 
training data. The performance of the models on this 
unseen test data is presented in Figures 1 and 2. 

The garnet model reports a root mean square 
error (RMSE) of 1.9 wt.%, and the ilmenite model a 
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RMSE of 2.7 wt.%. We consider this model 
performance to be fit for purpose to provide inputs 
for mineral resource estimates (MREs), and it is 
consistent with the performance of similar models 
that we have built for similar heavy mineral sand 
projects on West Coast.  

An initial model such as that presented here, 
coupled with an examination of the geochemistry of 
the entire dataset, provides an approach to optimise 
sampling. That is to say that additional samples can 
be located to summarise both the geochemical 
variability of the dataset, and to in-fill any gaps in the 
mineral abundances. For example, in the dataset 
presented here, particular attention should be given 
to samples that have a predicted garnet abundance 
of 12–20 wt.% and a predicted ilmenite abundance 
of 8–20 wt.% as these samples are missing in the 
dataset. Care should also be taken to ensure that 
there is adequate sample support around the cut-off 
grade of any subsequent MRE; this is likely in the 
1–3 wt.% garnet and ilmenite range which are not 
adequately sampled here. 

 
4 Summary 

In a heavy mineral sand project, where the 
mineralogy is quite simple, it is possible to build 
statistically robust models to predict garnet and 
ilmenite abundance with limited training data. These 
models can be validated by selection of additional 
samples to analyse by automated mineralogy based 
on an initial model – such as that presented here. 
Additional sampling and analysis is currently 
underway, based on the strategy we have used at 
other West Coast heavy mineral sand projects.  

Planned future work involves building models to 
predict the output of the processing plant directly 
from the whole-sample major element geochemistry 
of the raw starting material. The relationship 
between geochemistry of the raw material and the 
mineral abundances in the concentrate is less 
direct, but it is still possible to model the latter from 
the former. 

We also plan to do this with portable XRF results 
that can be acquired on site and within a matter of 
hours, without the need to send batches of samples 
away for laboratory XRF analysis. 

 
 
 

 
 

Figure 1. Modelled garnet vs measured garnet for a 30% 
holdout test dataset. These samples were excluded from 
the training dataset for the purposes of evaluating model 
performance, and the model trained on the remaining 
dataset using bootstrap resampling. Colour scale shows 
MnO wt.%. 

 
 

 

 
 

Figure 2. Modelled ilmenite vs measured ilmenite for a 
30% holdout test dataset. These samples were excluded 
from the training dataset for the purposes of evaluating 
model performance, and the model trained on the 
remaining dataset using bootstrap resampling. Colour 
scale shows TiO2 wt.%. 
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Abstract The aim of mineral prospectivity mapping (MPM) 
is to delineate areas that are favourable for certain mineral 
deposit types. This can be based on prior knowledge using 
a so-called empirical or data-driven approach or by 
translating expert knowledge into a mathematical formula 
by using a conceptual or knowledge-driven approach. 
Both approaches can benefit from machine learning 
methods using advanced computer algorithms that can 
learn from data. This learning can either be supervised or 
unsupervised. Geographical information systems (GIS) 
provide a perfect platform for conducting MPM, as in these 
systems, we can automate and build complex systems to 
construct models that can be used to predict where the 
best exploration terrains are hidden. This paper aims to 
describe how machine learning methods can be utilized in 
MPM in various steps. This is demonstrated via examples 
of several past and ongoing research and innovation 
projects. 
 
1 Mineral prospectivity mapping 

A mineral prospectivity mapping (MPM) process 
may be split into several steps (Fig. 1) (Nykänen et 
al. 2023). It starts from mineral systems modelling 
(Step 1), in which the important ingredients of a 
mineral system that formed the ore body are 
defined. These critical factors are then translated 
into mappable parameters that can later be used in 
GIS for MPM. Then, based on the characterization 
of the mineral system model, the data are either 
acquired from existing databases or from the field 
(Step 2). In the data pre-processing step (Step 3), 
data are transformed to represent proxies for critical 
parameters of the mineral systems. This is quite 
often the most time-consuming part of an MPM-
related project if the data acquisition part is not 
considered. Then follows the actual mineral 
prospectivity analysis (Step 4), in which two main 
approaches (or a combination of them) can be used. 
The final phase in MPM is model validation (Step 5), 
when statistical methods are applied to test how well 
the model has performed. 
 
1.1 Data-driven (empirical) approach 

The first approach in MPM is data driven (empirical), 
where prior knowledge of mineral deposits or 
occurrences is used to train the models. These 
techniques include many traditional MPM methods, 
as well as advanced machine learning and deep 
learning techniques requiring large amounts of 
training data to be successful. Weights of evidence 
(WoE) is a traditional statistical technique that is 
often used in data analysis and modelling for MPM 
(Bonham-Carter 1994). It is not considered as a 
form of machine learning, however, as it does not 
involve the use of algorithms that can learn patterns 

from data. Logistic regression, another popular 
classical data-driven MPM method, belongs to the 
machine learning category, and can be used for 
classification tasks. It is a statistical method that 
applies a logistic function to model the likelihood of 
a binary or categorical result based on one or more 
input features. Logistic regression is a supervised 
learning procedure, which means that this method 
requires labelled, i.e., previously known training 
data to learn the relationships connecting the input 
features and the outcome. It is a linear model, which 
means that it assumes a linear relationship between 
the input features and the log-odds of the outcome. 
An artificial neural network (ANN) can be seen as a 
form of machine learning that is constructed based 
on the structure and function of the human brain 
(Tsoukalas and Uhrig 1997; Looney 1997; Nykänen 
2008; Cracknell and Reading 2014). ANNs are 
designed to recognize patterns in multidimensional 
data, learn from these patterns, and make estimates 
or conclusions that are derived from this learning. 
ANNs are comprised of joined nodes, or neurons, 
processing and transmitting data through a series of 
layers. The input layer receives the data, which is 
then passed through one or more hidden layers 
before reaching the output layer, where the final 
prediction or decision is made. ANNs can be used 
for both supervised and unsupervised learning 
tasks, and they can handle complex non-linear 
relations between the variables. Artificial neural 
networks are a form of machine learning, 
specifically deep learning algorithms, that are used 
to identify arrays in data and make predictions or 
decisions based on this learning. 

Deep learning is a subfield of machine learning 
involving the use of ANNs with multiple layers to 
model and analyse complex relationships in data 
(LeCun et al. 2015). Deep learning algorithms are 
constructed to learn from large and complex 
datasets by automatically extracting features and 
patterns from the input data. Convolutional neural 
networks (CNNs) are common examples of deep 
learning model architectures. The advantage of 
using deep learning is its ability to learn hierarchical 
descriptions of the data so that each successive 
layer within the network learns increasingly from the 
features. This may be computationally intensive and 
may also require large amounts of training data, 
which can limit the applicability of CNNs in data-
poor areas. Furthermore, as with all ANNs, deep 
learning methods also tend to be “black box” in 
nature, so it can be difficult to interpret their 
decisions and to understand the reasoning behind 
their predictions.  
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Figure 1. The mineral prospectivity mapping workflow (modified from Nykänen et al. 2023). 
 
Applicable fields of use of ANNs include those 
where there is a need to analyse complex 
relationships in data and apply the technique to 
tasks, e.g., pattern recognition in images for 
structural geology. 

Self-organizing map (SOM) is a machine learning 
method that uses unsupervised learning to create a 
low-dimensional representation of high-dimensional 
data (Kohonen 1990). It can be used for data 
visualization and exploration, feature extraction, 
clustering, and pattern recognition assignments. 
SOM is a powerful and widely used machine 
learning method that can be applied to different data 
analysis purposes, and it has also recently been 
applied to mineral prospectivity mapping 
(Chudasama et al. 2022b). In MPM, SOMs can be 
used to identify spatial relationships and patterns in 
geological, geochemical, and geophysical data that 
may be indicative of mineralization. The SOM 
technique can use as input a large exploration 
dataset, including geological, geochemical, and 
geophysical data, and find clusters of similar data 
within the multidimensional feature space. When 
these datapoints also have spatial information (i.e., 
coordinates), the resulting map can then be used to 
identify areas that are most likely to contain mineral 
deposits based on the patterns and relationships 
within the data. 
 
1.2 Knowledge-driven (conceptual) approach 

The second approach in MPM is knowledge driven 
(conceptual), where expert knowledge is translated 
into a mathematical formula or model, and it does 
not require any known deposit within the study area 
to be used as training sites (McKay and Harris 
2016). Conceptual or knowledge-driven mineral 
prospectivity methods rely on understanding of 
geological processes and mineral deposit models to 

identify areas that are most likely to contain mineral 
occurrences or deposits. These methods assume 
that certain geological, geochemical, and 
geophysical features, and especially an explicit 
combination of them, are commonly associated with 
specific types of mineral deposits, and that by 
mapping these features from various exploration 
datasets, areas of high mineral potential can be 
identified.  

Fuzzy logic is one example of a conceptual or 
knowledge-driven approach. It is a method that 
deals with problem solving and decision making 
under uncertainty, having no crisp boundaries 
between sets (true and false). It is based on fuzzy 
set theory (Zadeh 1965). It is not a subset of 
machine learning, but it can be used in machine 
learning as a form of reasoning, allowing a computer 
code to make decisions based on data. Fuzzy logic 
overlay is used in geospatial analysis and decision 
making. It involves the integration of multiple layers 
of data, each of which represents a different variable 
or factor that is relevant to a specific decision or 
analysis. In MPM, these factors are related to the 
critical mineral systems parameters. 

The Boolean logic method or index overlay 
method uses a set of geological rules or constraints 
to create a model of the geological environment that 
is favourable for mineralization. The rules are based 
on expert knowledge and geological concepts, and 
the model is then used to identify areas of high 
mineral potential. 

The expert system method uses a set of rules 
and decision trees based on expert knowledge to 
identify areas of high mineral potential. The rules 
are based on geological concepts and the decision 
trees are used to guide the user through the 
prospectivity mapping process. 
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2 Tools developed for public use 

The Geological Survey of Finland (GTK) has been 
maintaining and updating a toolbox called ArcSDM, 
which was originally established by the U.S. 
Geological Survey and the Geological Survey of 
Canada (Sawatzky et al. 2009) and includes some 
of the key methodologies described by Bonham-
Carter (1994). This toolbox can be freely 
downloaded from GitHub (Geological Survey of 
Finland 2023a). The tools were updated in the 
project Mineral Prospectivity Modeller (MPM), 
funded by the Finnish Funding Agency for 
Technology (Tekes) (Geological Survey of Finland 
2023b). The same project also developed an online 
web service called MPM Online Tool (Fig. 2) 
(Geological Survey of Finland 2023c), which can be 
used to build simple Fuzzy logic overlay models 
using public geodata from Northern Finland on a 
web browser-based platform. 

Later, in 2018–2021, GTK developed a SOM 
toolbox, GisSOM (Geological Survey of Finland 
2023d), in an EU-funded project entitled NEXT. This 
toolbox can be used to cluster and visualize data, as 
described earlier. These SOM tools are currently 
being further developed in an on-going EIT 
RawMaterials-funded project entitled DroneSOM 
(DroneSOM 2023). 

The most recent development concerning MPM 
tools at GTK is the EU-funded project Exploration 
Information System (EIS), in which the project team 
is developing new geomodels of selected mineral 
systems and novel, fast, and cost-efficient spatial 
data analysis tools for mineral exploration on top of 
an open GIS platform (EIS 2023). This work is being 
conducted together with 17 partners from leading 
research institutes, academia, service providers, 
and the mining industry. The tools created will also 
eventually be freely downloadable from GitHub. The 
project duration is from May 2022 to April 2025. 
 

 
 

 
Figure 2. The MPM online tool (Geological Survey of Finland 2023c). 
 
 

3 Case studies 

While developing tools for MPM, the team at GTK 
has also tested the tools on numerous mineral 
deposit types using real exploration data from 
GTK’s public databases (Geological Survey of 
Finland 2023e). The main target test area has been 
Northern Finland, which is potential for many 
deposit types, including orogenic gold (Nykänen  
2008, Nykänen et al 2008a, Niiranen et al. 2015; 
Niiranen et al. 2019), orogenic gold with an atypical 
metal association (Chudasama et al. 2022a, 
2022b), IOCG (Nykänen et al. 2008b), magmatic 
Ni–Cu (Nykänen et al. 2015), and various cobalt-
bearing deposit types (Nykänen et al. 2023). In  

 
 
 
 
addition to peer-reviewed scientific papers and 
conference papers, some of these published 
models are available from the Mineral Deposits and 
Exploration web map service MDaE of GTK 
(Geological Survey of Finland 2023f). 
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Abstract. This study presents an integrated framework for 
interpreting geological prospectivity models, which are 
central to decision-making and land-use planning for 
critical mineral exploration campaigns. Besides geological 
prospectivity, there are other factors that are essential to 
policymaking. Different uncertainties linked to 
prospectivity models are of factors affecting geological 
prospectivity and, therefore, their interpretation. In 
addition, mineral deposits usually form in clusters and 
follow certain spatial patterns, making spatial distribution 
another important factor for the interpretation of geological 
prospectivity models. Herein, an integrated approach to 
interpreting geological prospectivity models is presented. 
This approach combines geological prospectivity, 
uncertainty, and spatial distribution to help make informed 
decisions while narrowing down the search space for 
mineral exploration. An example of using this approach is 
further demonstrated for national-scale delineation of 
exploration targets for REEs in Canada. 
 
1 Introduction  

Critical minerals are essential for renewable 
energy technologies and play an inevitable role in 
transitioning to a carbon-free economy. The 
demand for renewable energy sources continues to 
surge, leading to an ever-increasing demand for 
critical minerals. Ensuring a secure and sustainable 
supply of critical minerals is, thus, crucial for the 
transition to a carbon-free economy.  

Geological prospectivity models can help 
policymakers make informed decisions about critical 
mineral exploration campaigns. These models can 
help identify areas where critical minerals are likely 
to be discovered, thereby helping understand the 
potential supply of critical minerals and make 
decisions about where to invest in exploration and 
mining activities. 

Geological prospectivity models are mostly 
derived by the application of various supervised 
regression techniques. These are probability 
models in which high probability values pertain to 
favourable zones for discovering a given type of 
mineral deposits. These models, therefore, are 
continuous models that are devoid of interpretation. 
One must, thus, assign a threshold value to these 
models for demarcating exploration targets.  

Methods used for interpreting geological 
prospectivity models range from subjective 
assigning of a threshold value to objective 
interpretation of these models. The former method 
entails intrinsic problems. There is a chance of 
overestimating or underestimating exploration 
targets while setting a subjective value for 

interpreting geological prospectivity models. 
Turning to the latter methods, abrupt changes in the 
probability values (Porwal et al. 2003), spatial 
distribution of probability values (Parsa et al. 2017), 
and risk-return analysis (Parsa and Pour 2021) have 
been applied to objective interpretation of geological 
prospectivity models. Although these objective 
solutions address the problem of subjective bias, 
there is a need for a holistic approach to interpreting 
geological prospectivity models that considers 
spatial and statistical distribution of prospectivity 
values together with uncertainties linked to 
prospectivity models.  

Herein, an integrated methodology is proposed 
that considers the above aspects while interpreting 
geological prospectivity models. This methodology 
has been applied to national-scale geological 
prospectivity models of a suite of critical minerals, 
helping select high priority exploration targets.  

 
2 Methodology 

There are data- and model-related uncertainties that 
affect the results of geological prospectivity models. 
An open-source framework for measuring different 
uncertainty types for geological prospectivity 
mapping is presented in this study.  

This framework starts with selecting random sub-
samples from the labelled samples. Each set of 
random sub-samples is fed into different machine 
and deep learning algorithm, leading to a set of 
geological prospectivity models. These models are 
derived with different labelled samples and different 
regression models, helping measure the data- and 
model-related uncertainties. This is followed by the 
application of risk-return analysis and spatial 
measurements for objectively interpret the 
geological prospectivity models. This framework 
was exploited for generating exploration targets of 
several critical minerals, including REEs.  

The proposed framework is an open-source, 
versatile approach allowing for addition of 
algorithms or datasets.  
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Abstract. Tourmaline chemistry from different geological 
environments, including granite, Li-rich and -poor 
pegmatite, porphyry Cu-Mo, granite-related Sn, 
volcanogenic massive sulphide (VMS), unconformity U, 
orogenic gold, epithermal Au-Ag, and metapelite, were 
analysed by electron probe micro-analyser (EPMA) and 
laser ablation inductively coupled plasma mass 
spectrometry (LA-ICP-MS). The data was processed and 
analysed using principal component analysis (PCA) and 
partial least squares discriminant analysis (PLS-DA). Most 
tourmaline from the majority of the investigated geological 
environments straddle along dravite-schorl, with the 
exception of unconformity U (Mg-foitite), Li-bearing 
pegmatite, and some granite-related Sn (elbaite-
liddicoatite). LA-ICP-MS trace element PCA analysis 
results in good separation of Li-rich pegmatite, and 
unconformity U deposits. Granite-related Sn deposits tend 
to plot between Li-pegmatite and other magmatic rocks 
and magmatic-hydrothermal deposits on the first, second, 
and third components. Both Li-pegmatite and granite-
related Sn are inversely correlated to orogenic gold 
deposits. PLS-DA analysis results in good separation of Li-
rich and Li-poor pegmatite, and unconformity U. There is 
considerable overlap between other classes using PCA 
and PLS-DA. Further data collection and classification 
using machine learning (Random Forest) methods are the 
next steps of this project, as they will likely allow better 
discrimination of tourmaline from the investigated 
geological environments. 
 
1 Introduction  

Tourmaline is a common mineral in several 
geological environments and mineral deposits 
(Slack 1996, Trumbull et al. 2020). It has one of the 
largest stability ranges of crustal minerals and is 
characterized by low volume diffusion rates, so it 
usually preserves its original chemical composition 
and zonings reflecting the physicochemical 
conditions of its crystallization environments (van 
Hinsberg et al. 2011, Slack and Trumbull 2011). 

Tourmaline compositional data can be utilized as 
a pathfinder for different types of deposits. Sciuba et 
al. (2021) demonstrated that the tourmaline 
composition from orogenic gold deposits is 
controlled by the fluid composition, metamorphic 
facies, and composition of the country rocks, and is 
overall rich in Sr, V, and Ni and poor in Li, Be, Ga, 
Sn, Nb, Ta, U, and Th compared to tourmaline from 
other deposit types and geological environments. 

Nonetheless, the published tourmaline trace 
element datasets are often inconsistent and 
incomplete in the number of analyzed elements, 
making it difficult to compare different deposit types 
using statistical and machine learning methods. In 
this context, this project aims to build a 
homogeneous database and develop criteria for 

Figure 1. Composition of tourmaline from different geological 
environments. Tourmaline classification diagrams from Henry 
et al. (2011). a. Mg/(Mg+Fe) vs. Ca/(Ca+Na), b. Mg/(Mg+Fe) 
vs. X-vac/(X-vac+Na), and c. Ca/(Ca+Na) vs. Al/(Al+Fe). 1 – 
Sciuba et al. (2021). 
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using tourmaline chemistry as a geochemical 
prospecting tool. 

 
2 Methods 

2.1 Electron probe micro-analysis (EPMA)  

Major and minor elements were measured with a 
CAMECA SX-100 electron probe micro-analyzer 
equipped with five WDS spectrometers at Université 
Laval. Silicon, Ti, Al, V, Sc, Fe, Mg, Mn, Zn, Cu, Ni, 
Co, Ca, Sr, Na, K, F, and Cl were analysed using a 
5 µm beam, 15 kV acceleration voltage, and 20 nA 
current, counting 10s on background and 20s on 
peak. 

Tourmaline structural formula were calculated 
according to Henry et al. (2011), on the basis of 31 
anions, 29 oxygen atoms, and 3 apfu B. 

 
2.2 Laser ablation-inductively coupled plasma-

mass spectrometry (LA-ICP-MS)  

Major, minor, and trace elements were measured 
using an Agilent 8900 ICP-QQQ-MS coupled with a 
RESOlution-SE 193nm excimer at Université Laval. 
Acquisition parameters were 38 µm lines, at a 5 
µm/s line speed, 10 Hz laser frequency, and fluence 
of 4.67~8.25 J.cm-2. 

The Si concentration measured by EPMA was 
used as internal standard. The reference materials 

NIST-610 (7Li, 9Be, 23Na, 27Al, 44Ca, 47Ti, 53Cr), NIST-
612 (39K, 45Sc, 59Co, 60Ni, 71Ga, 85Rb, 86Sr, 89Y, 107Ag, 
111Cd, 115In, 118Sn, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 
146Nd, 152Sm, 153Eu, 155Gd, 159Tb, 163Dy, 165Ho, 166Er, 
169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 197Au, 232Th, 
238U), and GSE-1g (11B, 24Mg, 51V, 55Mn, 56Fe, 57Fe, 
65Cu, 66Zn, 92Zr, 93Nb, 95Mo, 207Pb) were used as 
primary standards depending on the element. When 
not used for quantification, NIST-610, NIST-612, 
GSE-1g, KL2-G, and ML3B-G were used as 
secondary standards to control data quality. 

Data reduction was carried out using the Iolite 
package for Igor Pro software (Paton et al. 2011). 

 
2.3 Multivariate statistical analysis 

Prior to PCA and PLS-DA, the dataset was 
processed for variables (elements) with values 
below the detection limit (censored values). 
Elements with more than 40% censored values 
were excluded. For the remaining, censored values 
were imputed using the log-ratio Expectation-
Maximization (lrEM) algorithm (R package 
zCompositions; Palarea-Albaladejo and Martín-
Fernández 2015). This algorithm ensures that 
censored values are replaced by imputed values 
between zero and the detection limit. After 
imputation the dataset was transformed using 
centered log-ratios to overcome the closure effect in 
compositional data (Aitchison 1986). 

Figure 2. PCA diagrams of tourmaline trace elements measured by LA-ICP-MS. Loadings (PC1-PC2) and scores (t1-t2) on the first and 
second components are shown on a and b. Loadings (PC1-PC3) and scores (t1-t3) on the first and third components are shown on c 
and d. 1 – Sciuba et al. (2021). 
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The PCA is an unsupervised method used to 
reduce a larger set of variables to a smaller number 
of uncorrelated variables called principal 
components (PC). Each PC explains part of the 
variance of the data, with the first (PC1) capturing 
the greatest variance, followed by the second 
(PC2), and so forth. The PCA loadings are the 
correlation coefficients between original variables 
and PCs, and provide information on the impact of 
a variable on a given PC. The PCA Scores are 
composite values for each sample on each PC, 
calculated using the original variable values and 
factor weights (Makvandi et al. 2019 and references 
therein). 

The PLS-DA, on the other hand, is a supervised 
classification method that combines partial least 
squares regression using a continuous data matrix 
X (elements), and discriminant analysis, using a 
categorical outcome matrix Y (different classes). 
The PLS components (scores; t1, t2, etc.) and 
loadings (wq*1, wq*2, etc.) are among the main 
PLS-DA outcomes. Another significant output is the 
variable importance on the projection (VIP) plot (Fig. 
3e), where elements with VIP values larger than 1.0 
are the most influential variables in the model, 
variables between 0.8 and 1.0 are moderately 
influential, and values smaller than 0.8 do not 
contribute significantly in the sample classification 
(Makvandi et al. 2021 and references therein). 

For both PCA and PLS-DA plots, positively 
correlated variables are shown grouped, whereas 
negatively correlated variables plot diametrically 

opposed. The location of variables is dependent on 
their contribution to discrimination. Variables near 
the origin contribute weakly to classification, 
whereas the outer variables are highly variable 
between classes (Caraballo et al. 2022). 

 
3 Results and discussion 

Thirty tourmaline-bearing samples from granite, 
porphyritic intrusion, Li-rich pegmatite, porphyry Cu-
Mo, granite-related Sn, VMS, unconformity U, and 
metapelite were investigated by EPMA and LA-ICP-
MS. The Sciuba et al. (2021) dataset was added to 
this study, because the same set of elements were 
analysed. 

Tourmaline major element composition shows 
large compositional ranges, reflected in different 
tourmaline species (Fig. 1). Most of the investigated 
geological environments present tourmaline that 
ranges from schorl (Fe-rich, sodic) to dravite (Mg-
rich, sodic). Porphyritic intrusion, granite-related Sn, 
porphyry Cu-Mo, and orogenic gold have foitite (Fe-
rich, X-site vacant), feruvite (Fe-rich, calcic), and 
uvite (Mg-rich, calcic), but these represent minor 
members of a dominantly schorl-dravite population 
of the same deposit types. Unconformity U deposits 
and Li-rich pegmatite are Mg-foitite (Fe-rich, X-site 
vacant) and elbaite (Li-rich, sodic) or liddicoatite (Li-
rich, calcic), respectively. 

The trace element compositions, variance, and 
correlations along different classes were analyzed 
by PCA and PLS-DA. From the PCA score and 

Figure 3. PLS-DA diagrams of tourmaline trace elements measured by LA-ICP-MS. Loadings (qw*1-qw*2) and scores (t1-t2) on the 
first and second components are shown on a and b. Loadings (qw*1-qw*3) and scores (t1-t3) on the first and third components are 
shown on c and d. The VIP plot is shown on e. 1 – Sciuba et al. (2021). 
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loadings plots (Fig. 2), unconformity U and Li-rich 
pegmatite are well separated from the other classes 
on the t1 vs. t3 (Fig. 2b) and t1 vs. t2 and t3 (Fig. 2b 
and 2d) score plots. 

On the loadings plot of the first two principal 
components (Fig. 2a), Li-rich pegmatite is 
influenced by high contents of the elements on the 
lower right quadrant (i.e., Li, Mn, Pb, La/Sm, Tb/Lu, 
Zn), and by extremely low contents of the elements 
on the opposed quadrant (i.e., Ni, V, Cr, Co, Sc, Sr, 
Mg, Ba, Zr). On the first and third loadings plot (Fig. 
2c), Li-rich pegmatite is influenced by a similar set 
of elements, with the addition of Be, Al, B, U, Th, Cu, 
Y, and Hf. Nonetheless, unconformity U deposits are 
characterized by a low concentration of most 
elements, especially Fe, Zn, and Ti. 

All other groups are largely overlapping, but 
granite-related Sn tends to plot between Li-rich 
pegmatite and granite, Li-poor pegmatite, and VMS 
on both diagrams. Granite-related Sn deposits are 
positively correlated with LREE, Na, Al, Ga, Sn, Nb, 
and Ta. 

Epithermal Au-Ag, metapelite, porphyritic 
intrusion, and porphyry Cu-Mo tend to plot near the 
origin. The first slightly tends toward elements 
enriched in felsic rocks, whereas the rest tends to 
the elements enriched in mafic rocks. Orogenic gold 
deposits are inversely correlated to Li-rich 
pegmatite and characterized by high Sr, V, Ni, Co, 
Cr, Mg, and Sc concentrations. 

The PLS-DA score and loading plots (Fig. 3a, 3b, 
3c, and 3d) highlight the separation of Li-rich 
pegmatite and unconformity U on the first, second, 
and third components. Lithium-poor pegmatite is 
well-defined on the first and third components. The 
Li-rich pegmatite class is evidenced by high 
concentrations of Be, Li, Mn, Nb, Pb, Sn, Ta, and 
LREE, and low concentrations of Ba, Cr, Mg, Ni, Sc, 
Sr, and V. Unconformity U is characterized by high 
Th, U, Y, and Zr and low Ca, Fe, Mn, Na, Sn, Sr, Ti, 
and Zn. Li-poor pegmatite (Fig. 3f) is well separated 
by the third component and is evidenced by high Fe, 
Nb, Sn, Ta, and U and low Al, B, Cu, Ni, and V. 

The VIP plot (Fig. 3e) highlights the importance 
of Ba, Cr, Li, Mg, Mn, Nb, Ni, Sc, Sn, Sr, Ta, V, and 
LREE for the PLS-DA model. 

 
4 Conclusions 

Both PCA and PLS-DA are good at classifying Li-
rich pegmatite and unconformity U. However, these 
classes are different from the other geological 
environments by their major element composition 
since they are elbaite-liddicoatite and Mg-foitite. 

Both models suggest that tourmaline from 
orogenic gold deposits has a high concentration of 
elements enriched in mafic rocks. In contrast, Li-rich 
pegmatite and granite-related Sn deposits 
tourmaline have a high concentration of elements 
enriched in evolved felsic rocks. This suggests that 
tourmaline chemistry can record the nature of the 
magmatic source of hydrothermal fluids for 
magmatic-hydrothermal deposits, or the 

composition of buffering rocks for metamorphic 
fluids, as shown by Sciuba et al. (2021). 

Further data collection, PLS-DA algorithm tuning 
with the best-performing elements, and 
classification using machine learning (Random 
Forest) methods are the next steps of this project, 
as they will likely allow better discrimination of 
tourmaline from the investigated geological 
environments. 
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